Suppr超能文献

[使用预测模型识别工作人群中冠心病高危个体]

[Identification of subjects at high risk of coronary disease in a working population using a prediction model].

作者信息

Laurier D, Chau N P

机构信息

Unité de recherches biomathématiques et biostatistiques, INSERM U263, Université Paris VII.

出版信息

Arch Mal Coeur Vaiss. 1995 Nov;88(11):1569-75.

PMID:8745990
Abstract

Identification of subjects at high risk of coronary morbidity is of major interest in the prevention of cardiovascular disease. This report describes the use of a multifactorial prediction model for the identification of high risk subjects in a French male population. The PCV-METRA study (Prévention Cardiovasculaire en Médecine du Travail) monitors risk factors of cardiovascular morbidity in a population of men and women employed in big companies in the Paris region. A model adapted from a prediction model conceived by K.M. Anderson et al. in the Framingham study was used. The modified model enables an estimation of individual coronary risk based on 7 factors: age, total cholesterol, HDL-cholesterol, systolic blood pressure, smoking, diabetes and presence of left ventricular hypertrophy, taking into account the relatively low prevalence of coronary heart disease in France. The population comprised 4,131 active men aged 30 to 65 years. The average risk at 5 years was estimated to be 1.6%. Subjects at high risk (over the 80th percentile of the risk distribution curve) usually had high blood pressures and cholesterol levels. However, nearly 30% of these subjects were neither hypertensive nor hypercholesteraemic. It is important to note that 3/4 of these smoked. Moreover, they also had low HDL-cholesterol levels. A risk table, derived from the Framingham model, is presented. This table allows estimation of individual risk at 5 years in men aged 30 to 65 years. In each age group, the comparison of individual risk with the percentiles of risk distribution in the PCV-METRA population allows identification of high-risk subjects. This study proposes a tool for identifying subjects at high risk of coronary morbidity in a French male population. This multifactorial model is particularly useful for detecting subjects with several borderline factors none of which overstep the usually accepted limits.

摘要

识别冠心病发病高危人群是预防心血管疾病的主要关注点。本报告描述了一种多因素预测模型在识别法国男性人群高危个体中的应用。PCV - METRA研究(职业医学中的心血管预防)监测巴黎地区大公司中就业的男性和女性人群的心血管发病风险因素。采用了一种改编自K.M.安德森等人在弗雷明汉研究中构思的预测模型。改良后的模型能够基于7个因素估计个体冠心病风险:年龄、总胆固醇、高密度脂蛋白胆固醇、收缩压、吸烟、糖尿病和左心室肥厚的存在情况,同时考虑到法国冠心病相对较低的患病率。研究人群包括4131名年龄在30至65岁的在职男性。5年的平均风险估计为1.6%。高危个体(风险分布曲线第80百分位数以上)通常血压和胆固醇水平较高。然而,这些个体中近30%既没有高血压也没有高胆固醇血症。需要注意的是,其中四分之三的人吸烟。此外,他们的高密度脂蛋白胆固醇水平也较低。给出了一个源自弗雷明汉模型的风险表。该表可用于估计30至65岁男性5年的个体风险。在每个年龄组中,将个体风险与PCV - METRA人群的风险分布百分位数进行比较,可识别高危个体。本研究提出了一种识别法国男性人群中冠心病发病高危个体的工具。这种多因素模型对于检测具有多个临界因素但无一个超过通常公认限值的个体特别有用。

相似文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验