Suppr超能文献

Na+ channel beta 1 subunit mRNA expression in developing rat central nervous system.

作者信息

Sashihara S, Oh Y, Black J A, Waxman S G

机构信息

Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA.

出版信息

Brain Res Mol Brain Res. 1995 Dec 28;34(2):239-50. doi: 10.1016/0169-328x(95)00168-r.

Abstract

The sodium channel beta 1 subunit (Na beta 1) is a component of the rat brain voltage-dependent sodium channel. We have used nonradioactive in situ hybridization cytochemical techniques to demonstrate that transcript levels of Na beta 1 are differentially upregulated during postnatal development of several CNS regions, with selective labeling of specific neuronal populations. In the hippocampus, labeling of the pyramidal cell layer (particularly in the CA3 region) and dentate granule cells was initially observed at postnatal day 2 (P2) and P10, respectively, and became progressively more intense with maturation. Labeled cells were first observed in the hilus at P10. In the developing cerebellum, transient labeling was observed in the external granule cell layer beginning at P1 while label increased in the internal granule cell layer up to P21. Purkinje cells showed significant label beginning at P4 and increasing up to P21. Weak signal was seen in neurons of deep nuclei at P1 and increased up to P21. Na beta 1 labeling in the spinal cord was first observed in the ventral horn at P2, and the intensity of labeling in these large motoneurons gradually increased. In addition, there was a ventral-dorsal gradient in this region, with label appearing subsequently in neurons of Rexed laminae IX, VII and VIII, and in the dorsal horn (Rexed laminae I-VI). In these regions, the labeling reached a plateau within the first 2-3 weeks after birth and persisted into the adult rat. The time course and regional heterogeneity of Na beta 1 expression are consistent with the hypothesis that the expression of mature Na+ channels, including Na beta 1, contributes to the development of circuitry that supports complex patterns of electrogenesis.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验