Suppr超能文献

软组织伤口愈合血管生成模型。

A model of wound-healing angiogenesis in soft tissue.

作者信息

Pettet G J, Byrne H M, McElwain D L, Norbury J

机构信息

School of Mathematics, Queensland University of Technology, Brisbane, Australia.

出版信息

Math Biosci. 1996 Aug;136(1):35-63. doi: 10.1016/0025-5564(96)00044-2.

Abstract

Angiogenesis, or blood vessel growth, is a critical step in the wound-healing process, involving the chemotactic response of blood vessel endothelial cells to macrophage-derived factors produced in the wound space. In this article, we formulate a system of partial differential equations that model the evolution of the capillary-tip endothelial cells, macrophage-derived chemoattractants, and the new blood vessels during the tissue repair process. Chemotaxis is incorporated as a dominant feature of the model, driving the wave-like ingrowth of the wound-healing unit. The resulting model admits traveling wave solutions that exhibit many of the features characteristic of wound healing in soft tissue. The steady propagation of the healing unit through the wound space, the development of a dense band of fine, tipped capillaries near the leading edge of the wound-healing unit (the brush-border effect), and an elevated vessel density associated with newly healed wounds, prior to vascular remodeling, are all discernible from numerical simulations of the full model. Numerical simulations mimic not only the normal progression of wound healing but also the potential for some wounds to fail to heal. Through the development and analysis of a simplified model, insight is gained into how the balance between chemotaxis, tip proliferation, and tip death affects the structure and speed of propagation of the healing unit. Further, expressions defining the healed vessel density and the wavespeed in terms of known parameters lead naturally to the identification of a maximum wavespeed for the wound-healing process and to bounds on the healed vessel density. The implications of these results for wound-healing management are also discussed.

摘要

血管生成,即血管生长,是伤口愈合过程中的关键步骤,涉及血管内皮细胞对伤口空间中巨噬细胞衍生因子的趋化反应。在本文中,我们建立了一个偏微分方程组,用于模拟组织修复过程中毛细血管尖端内皮细胞、巨噬细胞衍生的趋化因子和新血管的演变。趋化作用作为模型的主要特征被纳入其中,驱动伤口愈合单元呈波浪状向内生长。由此产生的模型允许行波解,这些解展现出软组织伤口愈合的许多特征。通过对完整模型的数值模拟,可以清楚地看到愈合单元在伤口空间中的稳定传播、在伤口愈合单元前缘附近形成致密的细尖端毛细血管带(刷状缘效应)以及在血管重塑之前与新愈合伤口相关的血管密度升高。数值模拟不仅模拟了伤口愈合的正常进程,还模拟了一些伤口无法愈合的可能性。通过开发和分析一个简化模型,深入了解了趋化作用、尖端增殖和尖端死亡之间的平衡如何影响愈合单元的结构和传播速度。此外,根据已知参数定义愈合血管密度和波速的表达式自然地得出了伤口愈合过程的最大波速以及愈合血管密度的界限。还讨论了这些结果对伤口愈合管理的意义。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验