Dekker L R, Fiolet J W, VanBavel E, Coronel R, Opthof T, Spaan J A, Janse M J
Department of Experimental Cardiology, Academic Medical Center, Amsterdam, The Netherlands.
Circ Res. 1996 Aug;79(2):237-46. doi: 10.1161/01.res.79.2.237.
During myocardial ischemia, electrical uncoupling and contracture herald irreversible damage. In the present study, we tested the hypothesis that an increase of intracellular Ca2+ is an important factor initiating these events. Therefore, we simultaneously determined tissue resistance, mechanical activity, pH(0), and intracellular Ca2+ (with the fluorescent indicator indo 1, Molecular Probes, Inc) in arterially perfused rabbit papillary muscles. Sustained ischemia was induced in three experimental groups: (1) control, (2) preparations preconditioned with two 5-minute periods of ischemia followed by reperfusion, and (3) preparations pretreated with 1 mmol/L iodoacetate to block anaerobic metabolism and minimize acidification during ischemia. In a fourth experimental group, intracellular Ca2+ was increased under nonischemic conditions by perfusing with 0.1 mmol/L ionomycin and 0.1 mumol/L gramicidin. Ca2+ transients and contractions rapidly disappeared after the induction of ischemia. In the control group, diastolic Ca2+ began to rise after 12.6 +/- 1.3 minutes of ischemia; uncoupling, after 14.5 +/- 1.2 minutes of ischemia; and contracture, after 12.6 +/- 1.5 minutes of ischemia (mean +/- SEM). Preconditioning significantly postponed Ca2+ rise, uncoupling, and contracture (21.5 +/- 4.0, 24.0 +/- 4.1, and 23.0 +/- 5.3 minutes of ischemia, respectively). Pretreatment with iodoacetate significantly advanced these events (1.9 +/- 0.7, 3.6 +/- 0.9, and 1.9 +/- 0.2 minutes of ischemia, respectively). In all groups, the onset of uncoupling always followed the start of Ca2+ rise, whereas the start of contracture was not different from the rise in Ca2+. Perfusion with ionomycin and gramicidin permitted estimation of a threshold [Ca2+] for electrical uncoupling of 685 +/- 85 nmol/L. In conclusion, the rise in intracellular Ca2+ is the main trigger for cellular uncoupling during ischemia. Contracture is closely associated with the increase of intracellular Ca2+ during ischemia.
在心肌缺血期间,电脱耦联和挛缩预示着不可逆损伤。在本研究中,我们检验了细胞内Ca2+升高是引发这些事件的重要因素这一假说。因此,我们在动脉灌注的兔乳头肌中同时测定了组织电阻、机械活性、pH(0)和细胞内Ca2+(使用荧光指示剂indo 1,Molecular Probes公司)。在三个实验组中诱导持续性缺血:(1)对照组,(2)经两个5分钟缺血期预处理后再灌注的标本,(3)用1 mmol/L碘乙酸预处理以阻断无氧代谢并使缺血期间的酸化最小化的标本。在第四个实验组中,在非缺血条件下通过用0.1 mmol/L离子霉素和0.1 μmol/L短杆菌肽灌注来升高细胞内Ca2+。缺血诱导后,Ca2+瞬变和收缩迅速消失。在对照组中,缺血12.6±1.3分钟后舒张期Ca2+开始升高;缺血14.5±1.2分钟后发生脱耦联;缺血12.6±1.5分钟后发生挛缩(平均值±标准误)。预处理显著推迟了Ca2+升高、脱耦联和挛缩(分别为缺血21.5±4.0、24.0±4.1和23.0±5.3分钟)。用碘乙酸预处理显著提前了这些事件(分别为缺血1.9±0.7、3.6±0.9和1.9±0.2分钟)。在所有组中,脱耦联的开始总是在Ca2+升高之后,而挛缩的开始与Ca2+升高无差异。用离子霉素和短杆菌肽灌注允许估计电脱耦联的阈值[Ca2+]为685±85 nmol/L。总之,细胞内Ca2+升高是缺血期间细胞脱耦联的主要触发因素。挛缩与缺血期间细胞内Ca2+升高密切相关。