Suppr超能文献

Cytokines directly induce degranulation and superoxide production from human eosinophils.

作者信息

Horie S, Gleich G J, Kita H

机构信息

Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA.

出版信息

J Allergy Clin Immunol. 1996 Aug;98(2):371-81. doi: 10.1016/s0091-6749(96)70161-6.

Abstract

BACKGROUND

Cytokines are implicated in allergic diseases and can modulate effector functions of eosinophils stimulated by another agonist. However, little is known about the capacity of cytokines to directly trigger eosinophil degranulation.

OBJECTIVES

We attempted to determine whether cytokines can directly induce degranulation and superoxide production from eosinophils.

METHODS

Eosinophils from normal donors were incubated with various cytokines in albumin-coated tissue culture plates for 4 hours. To quantitate degranulation, the amounts of eosinophil-derived neurotoxin in supernatants were measured by radioimmunoassay. In addition, superoxide production was measured by superoxide dismutase-inhibitable reduction of cytochrome c.

RESULTS

IL-5, IL-3, granulocyte-macrophage colony-stimulating factor, tumor necrosis factor- alpha, and RANTES all induced eosinophil degranulation. Granulocyte-macrophage colony-stimulating factor was the most potent and induced eosinophil-derived neurotoxin release comparable to that induced by secretory IgA beads, one of the most potent secretagogues for eosinophils. In addition, IL-5 and tumor necrosis factor- alpha were synergistic in their induction of eosinophil degranulation. In contrast, IL-1, IL-8, interferon- gamma, and macrophage inflammatory protein-1 alpha did not induce degranulation. Finally, IL-5, IL-3, granulocyte-macrophage colony-stimulating factor, and tumor necrosis factor- alpha, but not RANTES, also induced superoxide production from eosinophils.

CONCLUSIONS

Certain cytokines directly induce eosinophil degranulation and superoxide production in vitro. Therefore these cytokines may be important in the release of toxic granule proteins from eosinophils in allergic diseases.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验