Suppr超能文献

Improved dipole localization using local mesh refinement of realistic head geometries: an EEG simulation study.

作者信息

Yvert B, Bertrand O, Echallier J F, Pernier J

机构信息

Brain Signals and Processes Laboratory, INSERM U280, Lyon, France.

出版信息

Electroencephalogr Clin Neurophysiol. 1996 Jul;99(1):79-89. doi: 10.1016/0921-884x(96)95691-x.

Abstract

A systematic evaluation of dipole localization accuracy using the boundary element method is presented. EEG simulations are carried out with dipoles located in the right parietal and temporal regions of the head. Uniformly meshed and locally refined head models are considered in both spherical and realistic geometries. An initial study determines the influence upon the localization accuracy of the dipole depth below the brain surface, of its orientation (radial and tangential), and of the global and local mesh densities. Simulated potential data are computed analytically in the spherical case, and numerically using a very fine (locally refined) model in the realistic case. Results in both geometries show that in order to get localization errors of about 2-4 mm, uniformly meshed models may be used for dipoles located at depths greater than 20 mm, whereas locally refined models should be used for shallower dipoles. Two other studies show how the localization accuracy depends upon the size of the local refinement area and upon the number of electrodes (19, 32, 63). Results show that a large number of electrodes brings significant improvements, especially for shallow and tangential dipoles.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验