Suppr超能文献

使用导联场插值法在生物电磁学中进行快速逼真建模。

Fast realistic modeling in bioelectromagnetism using lead-field interpolation.

作者信息

Yvert B, Crouzeix-Cheylus A, Pernier J

机构信息

INSERM Unité 280, 151 cours Albert Tomas, F-69424 Lyon cedex 03, France.

出版信息

Hum Brain Mapp. 2001 Sep;14(1):48-63. doi: 10.1002/hbm.1041.

Abstract

The practical use of realistic models in bioelectromagnetism is limited by the time-consuming amount of numerical calculations. We propose a method leading to much higher speed than currently available, and compatible with any kind of numerical methods (boundary elements (BEM), finite elements, finite differences). Illustrated with the BEM for EEG and MEG, it applies to ECG and MCG as well. The principle is two-fold. First, a Lead-Field matrix is calculated (once for all) for a grid of dipoles covering the brain volume. Second, any forward solution is interpolated from the pre-calculated Lead-Fields corresponding to grid dipoles near the source. Extrapolation is used for shallow sources falling outside the grid. Three interpolation techniques were tested: trilinear, second-order Bézier (Bernstein polynomials), and 3D spline. The trilinear interpolation yielded the highest speed gain, with factors better than x10,000 for a 9,000-triangle BEM model. More accurate results could be obtained with the Bézier interpolation (speed gain approximately 1,000), which, combined with a 8-mm step grid, lead to intrinsic localization and orientation errors of only 0.2 mm and 0.2 degrees. Further improvements in MEG could be obtained by interpolating only the contribution of secondary currents. Cropping grids by removing shallow points lead to a much better estimation of the dipole orientation in EEG than when solving the forward problem classically, providing an efficient alternative to locally refined models. This method would show special usefulness when combining realistic models with stochastic inverse procedures (simulated annealing, genetic algorithms) requiring many forward calculations.

摘要

生物电磁学中逼真模型的实际应用受到数值计算耗时的限制。我们提出一种方法,其速度比目前可用的方法快得多,并且与任何数值方法(边界元法(BEM)、有限元法、有限差分法)兼容。以用于脑电图(EEG)和脑磁图(MEG)的边界元法为例进行说明,它也适用于心电图(ECG)和心磁图(MCG)。原理有两个方面。首先,针对覆盖脑容积的偶极子网格一次性计算导联场矩阵。其次,从预先计算的与源附近网格偶极子对应的导联场中插值得到任何正向解。对于落在网格之外的浅层源则使用外推法。测试了三种插值技术:三线性插值、二阶贝塞尔插值(伯恩斯坦多项式)和三维样条插值。三线性插值产生的速度增益最高,对于一个9000个三角形的边界元模型,增益因子优于10000倍。使用贝塞尔插值(速度增益约为1000)可以获得更精确的结果,结合8毫米步长的网格,其固有定位和方向误差仅为0.2毫米和0.2度。通过仅插值二次电流的贡献,可以在脑磁图方面进一步改进。与传统求解正向问题相比,通过去除浅层点裁剪网格能更好地估计脑电图中的偶极子方向,为局部细化模型提供了一种有效的替代方法。当将逼真模型与需要许多正向计算的随机反演程序(模拟退火、遗传算法)相结合时,该方法将显示出特别的实用性。

相似文献

1
Fast realistic modeling in bioelectromagnetism using lead-field interpolation.
Hum Brain Mapp. 2001 Sep;14(1):48-63. doi: 10.1002/hbm.1041.
2
Rapidly recomputable EEG forward models for realistic head shapes.
Phys Med Biol. 2001 Apr;46(4):1265-81. doi: 10.1088/0031-9155/46/4/324.
3
Generalized head models for MEG/EEG: boundary element method beyond nested volumes.
Phys Med Biol. 2006 Mar 7;51(5):1333-46. doi: 10.1088/0031-9155/51/5/021. Epub 2006 Feb 15.
4
Bioelectromagnetic forward problem: isolated source approach revis(it)ed.
Phys Med Biol. 2012 Jun 7;57(11):3517-35. doi: 10.1088/0031-9155/57/11/3517. Epub 2012 May 11.
6
EEG and MEG: forward solutions for inverse methods.
IEEE Trans Biomed Eng. 1999 Mar;46(3):245-59. doi: 10.1109/10.748978.
7
Symmetric BEM formulation for the M/EEG forward problem.
Inf Process Med Imaging. 2003 Jul;18:524-35. doi: 10.1007/978-3-540-45087-0_44.
8
Linear inverse solutions: simulations from a realistic head model in MEG.
Brain Topogr. 2005 Winter;18(2):87-99. doi: 10.1007/s10548-005-0278-6. Epub 2005 Dec 5.
9
Sensitivity of EEG and MEG measurements to tissue conductivity.
Phys Med Biol. 2004 Mar 7;49(5):701-17. doi: 10.1088/0031-9155/49/5/004.
10
Monte Carlo simulation studies of EEG and MEG localization accuracy.
Hum Brain Mapp. 2002 May;16(1):47-62. doi: 10.1002/hbm.10024.

引用本文的文献

1
The Discontinuous Galerkin Finite Element Method for Solving the MEG and the Combined MEG/EEG Forward Problem.
Front Neurosci. 2018 Feb 2;12:30. doi: 10.3389/fnins.2018.00030. eCollection 2018.
2
Variability of magnetoencephalographic sensor sensitivity measures as a function of age, brain volume and cortical area.
Clin Neurophysiol. 2014 Oct;125(10):1973-84. doi: 10.1016/j.clinph.2014.01.027. Epub 2014 Feb 14.
3
NeuroMap: A Spline-Based Interactive Open-Source Software for Spatiotemporal Mapping of 2D and 3D MEA Data.
Front Neuroinform. 2011 Jan 31;4:119. doi: 10.3389/fninf.2010.00119. eCollection 2011.

本文引用的文献

2
Improving the accuracy of the boundary element method by the use of second-order interpolation functions.
IEEE Trans Biomed Eng. 2000 Oct;47(10):1336-46. doi: 10.1109/10.871407.
3
EEG and MEG: forward solutions for inverse methods.
IEEE Trans Biomed Eng. 1999 Mar;46(3):245-59. doi: 10.1109/10.748978.
4
Application of high-order boundary elements to the electrocardiographic inverse problem.
Comput Methods Programs Biomed. 1999 Feb;58(2):119-31. doi: 10.1016/s0169-2607(98)00076-5.
5
A sensor-weighted overlapping-sphere head model and exhaustive head model comparison for MEG.
Phys Med Biol. 1999 Feb;44(2):423-40. doi: 10.1088/0031-9155/44/2/010.
6
An improved boundary element method for realistic volume-conductor modeling.
IEEE Trans Biomed Eng. 1998 Aug;45(8):980-97. doi: 10.1109/10.704867.
7
Global optimization in the localization of neuromagnetic sources.
IEEE Trans Biomed Eng. 1998 Jun;45(6):716-23. doi: 10.1109/10.678606.
8
Spatio-temporal EEG source localization using simulated annealing.
IEEE Trans Biomed Eng. 1997 Nov;44(11):1075-91. doi: 10.1109/10.641335.
10
Inverse localization of electric dipole current sources in finite element models of the human head.
Electroencephalogr Clin Neurophysiol. 1997 Apr;102(4):267-78. doi: 10.1016/s0013-4694(96)95698-9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验