Sumners C, Zhu M, Gelband C H, Posner P
Department of Physiology, College of Medicine, University of Florida, Gainesville 32610, USA.
Am J Physiol. 1996 Jul;271(1 Pt 1):C154-63. doi: 10.1152/ajpcell.1996.271.1.C154.
Angiotensin II (ANG II) elicits an ANG II type 1 (AT1) receptor-mediated decrease in voltage-dependent K+ current (Ik) and an increase in voltage-dependent Ca2+ current (ICa) in neurons cocultured from newborn rat hypothalamus and brain stem. Modulation of these currents by ANG II involves intracellular messengers that result from an AT1 receptor-mediated stimulation of phosphoinositide hydrolysis. For example, the effects of ANG II on IK and ICa were abolished by phospholipase C antagonists. The reduction in IK produced by ANG II was attenuated by either protein kinase C (PKC) antagonists or by chelation of intracellular Ca2+. By contrast, PKC antagonism abolished the stimulatory effect of ANG II on ICa. Superfusion of the PKC activator phorbol 12-myristate 13-acetate produced effects on IK and ICa similar to those observed after ANG II. Furthermore, intracellular application of inositol 1,4,5-trisphosphate (IP3) elicited a significant reduction in IK. This suggests that the AT1 receptor-mediated changes in neuronal K+ and Ca2+ currents involve PKC (both IK and ICa) and IP3 and/or intracellular Ca2+ (IK).