Savalia Krupa, Manickam Devika S, Rosenbaugh Erin G, Tian Jun, Ahmad Iman M, Kabanov Alexander V, Zimmerman Matthew C
Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, USA.
Division of Molecular Pharmaceutics and Center for Nanomedicine in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
Free Radic Biol Med. 2014 Aug;73:299-307. doi: 10.1016/j.freeradbiomed.2014.06.001. Epub 2014 Jun 9.
Excessive production of superoxide (O2(-)) in the central nervous system has been widely implicated in the pathogenesis of cardiovascular diseases, including chronic heart failure and hypertension. In an attempt to overcome the failed therapeutic impact of currently available antioxidants in cardiovascular disease, we developed a nanomedicine-based delivery system for the O2(-)-scavenging enzyme copper/zinc superoxide dismutase (CuZnSOD), in which CuZnSOD protein is electrostatically bound to a poly-l-lysine (PLL50)-polyethylene glycol (PEG) block copolymer to form a CuZnSOD nanozyme. Various formulations of CuZnSOD nanozyme are covalently stabilized by either reducible or nonreducible crosslinked bonds between the PLL50-PEG polymers. Herein, we tested the hypothesis that PLL50-PEG CuZnSOD nanozyme delivers active CuZnSOD protein to neurons and decreases blood pressure in a mouse model of angiotensin II (AngII)-dependent hypertension. As determined by electron paramagnetic resonance spectroscopy, nanozymes retain full SOD enzymatic activity compared to native CuZnSOD protein. Nonreducible CuZnSOD nanozyme delivers active CuZnSOD protein to central neurons in culture (CATH.a neurons) without inducing significant neuronal toxicity. Furthermore, in vivo studies conducted in adult male C57BL/6 mice demonstrate that hypertension established by chronic subcutaneous infusion of AngII is significantly attenuated for up to 7 days after a single intracerebroventricular injection of nonreducible nanozyme. These data indicate the efficacy of nonreducible PLL50-PEG CuZnSOD nanozyme in counteracting excessive O2(-) and decreasing blood pressure in AngII-dependent hypertensive mice after central administration. Additionally, this study supports the further development of PLL50-PEG CuZnSOD nanozyme as an antioxidant-based therapeutic option for hypertension.
中枢神经系统中超氧化物(O2(-))的过度产生已被广泛认为与心血管疾病的发病机制有关,包括慢性心力衰竭和高血压。为了克服目前可用的抗氧化剂在心血管疾病治疗中效果不佳的问题,我们开发了一种基于纳米药物的递送系统,用于递送清除O2(-)的酶铜/锌超氧化物歧化酶(CuZnSOD),其中CuZnSOD蛋白通过静电作用与聚-L-赖氨酸(PLL50)-聚乙二醇(PEG)嵌段共聚物结合,形成CuZnSOD纳米酶。CuZnSOD纳米酶的各种制剂通过PLL50-PEG聚合物之间的可还原或不可还原交联键进行共价稳定。在此,我们测试了以下假设:PLL50-PEG CuZnSOD纳米酶将活性CuZnSOD蛋白递送至神经元,并降低血管紧张素II(AngII)依赖性高血压小鼠模型的血压。通过电子顺磁共振光谱测定,与天然CuZnSOD蛋白相比,纳米酶保留了完整的SOD酶活性。不可还原的CuZnSOD纳米酶将活性CuZnSOD蛋白递送至培养的中枢神经元(CATH.a神经元),而不会诱导明显的神经元毒性。此外,在成年雄性C57BL/6小鼠中进行的体内研究表明,在单次脑室内注射不可还原纳米酶后,通过慢性皮下注射AngII建立的高血压在长达7天的时间内得到显著缓解。这些数据表明,不可还原的PLL50-PEG CuZnSOD纳米酶在中枢给药后可有效对抗过量的O2(-)并降低AngII依赖性高血压小鼠的血压。此外,本研究支持将PLL50-PEG CuZnSOD纳米酶进一步开发为基于抗氧化剂的高血压治疗选择。