Nurko S, Sogabe K, Davis J A, Roeser N F, Defrain M, Chien A, Hinshaw D, Athey B, Meixner W, Venkatachalam M A, Weinberg J M
Department of Internal Medicine, University of Michigan, Ann Arbor, USA.
Am J Physiol. 1996 Jan;270(1 Pt 2):F39-52. doi: 10.1152/ajprenal.1996.270.1.F39.
The actin cytoskeleton of rabbit proximal tubules was assessed by deoxyribonuclease (DNase) binding, sedimentability of detergent-insoluble actin, laser-scanning confocal microscopy, and ultrastructure during exposure to hypoxia, antimycin, or antimycin plus ionomycin. One-third of total actin was DNase reactive in control cells prior to deliberate depolymerization, and a similar proportion was unsedimentable from detergent lysates during 2.5 h at 100,000 g. Tubules injured by hypoxia or antimycin alone, without glycine, showed Ca(2+)-dependent pathology of the cytoskeleton, consisting of increases in DNase-reactive actin, redistribution of pelletable actin, and loss of microvilli concurrent with lethal membrane damage. In contrast, tubules similarly depleted of ATP and incubated with glycine showed no significant changes of DNase-reactive actin or actin sedimentability for up to 60 min, but, nevertheless, developed substantial loss of basal membrane-associated actin within 15 min and disruption of actin cores and clubbing of microvilli at durations > 30 min. These structural changes that occurred in the presence of glycine were not prevented by limiting Ca2+ availability or pH 6.9. Very rapid and extensive cytoskeletal disruption followed antimycin-plus-ionomycin treatment. In this setting, glycine and pH 6.9 decreased lethal membrane damage but did not ameliorate pathology in the cytoskeleton or microvilli; limiting Ca2+ availability partially protected the cytoskeleton but did not prevent lethal membrane damage. The data suggest that both ATP depletion-dependent but Ca(2+)-independent, as well as Ca(2+)-mediated, processes can disrupt the actin cytoskeleton during acute proximal tubule cell injury; that both types of change occur, despite protection afforded by glycine and reduced pH against lethal membrane damage; and that Ca(2+)-independent processes primarily account for prelethal actin cytoskeletal alterations during simple ATP depletion of proximal tubule cells.
通过脱氧核糖核酸酶(DNase)结合、去污剂不溶性肌动蛋白的沉降性、激光扫描共聚焦显微镜以及在暴露于缺氧、抗霉素或抗霉素加离子霉素期间的超微结构,对兔近端小管的肌动蛋白细胞骨架进行了评估。在故意解聚之前,对照细胞中总肌动蛋白的三分之一具有DNase反应性,并且在100,000 g下2.5小时内,去污剂裂解物中有相似比例的肌动蛋白不可沉降。在没有甘氨酸的情况下,单独受缺氧或抗霉素损伤的小管显示出细胞骨架的钙(Ca2+)依赖性病理变化,包括DNase反应性肌动蛋白增加、可沉淀肌动蛋白的重新分布以及微绒毛丧失,同时伴有致命的膜损伤。相比之下,同样耗尽ATP并与甘氨酸一起孵育的小管在长达60分钟内,DNase反应性肌动蛋白或肌动蛋白沉降性没有显著变化,但是,在15分钟内基底膜相关肌动蛋白出现大量损失,在超过30分钟时肌动蛋白核心破坏和微绒毛杵状变。在甘氨酸存在的情况下发生的这些结构变化,不会因限制Ca2+可用性或pH值为6.9而受到阻止。抗霉素加离子霉素处理后,细胞骨架出现非常快速且广泛的破坏。在这种情况下,甘氨酸和pH值为6.9减少了致命的膜损伤,但没有改善细胞骨架或微绒毛中的病理变化;限制Ca2+可用性部分保护了细胞骨架,但没有防止致命的膜损伤。数据表明,在急性近端小管细胞损伤期间,依赖ATP消耗但不依赖Ca2+的过程以及Ca2+介导的过程都可破坏肌动蛋白细胞骨架;尽管甘氨酸和降低的pH值对致命的膜损伤有保护作用,但这两种类型的变化都会发生;并且在近端小管细胞简单的ATP消耗期间,不依赖Ca2+的过程主要导致致死前的肌动蛋白细胞骨架改变。