Suppr超能文献

Bound inorganic phosphate and early contractile failure in global ischaemia.

作者信息

Armiger L C, Headrick J P, Jordan L R, Willis R J

机构信息

Department of Pathology, University of Auckland, New Zeland.

出版信息

Basic Res Cardiol. 1995 Nov-Dec;90(6):482-8. doi: 10.1007/BF00788541.

Abstract

Inorganic phosphate (Pi) accumulates extremely rapidly in ischaemic heart muscle and intracellular binding of this metabolite may account for the precipitous loss of function seen at the onset of severe ischaemia. We have used 31P-NMR spectroscopy to measure the free cytosolic [Pi] and chemical assay techniques to measure total tissue Pi at 0, 1, 2, 3, 4, 5, and 12 min of complete global ischaemia in the isolated isovolumic rat heart. At zero time, the Pi assayed chemically was 30.77 +/- 5.52 mumol/g dry wt (mean +/- SD, n = 7) whilst Pi assayed by NMR was 3.39 +/- 1.21 mumol/g dry wt (n = 15). Thus, 27.38 mumol/g dry wt of Pi was bound at a cytosolic [Pi] of 0.82 mM. After 12 min of ischaemia, 49.88 mumol/g dry wt of Pi was bound at a cytosolic [Pi] of 4.11 mM. When all data were fitted, using a non-linear, least squares fit (p < 0.05), to the binding isotherm: Bound Pi = Bmax'. [Pi]/Kd'+[Pi], the apparent binding parameters Kd' and Bmax' were estimated to be 1.1 +/- 0.6 mM and 64.0 +/- 10.2 mumol/g dry wt respectively. During the first minute of global ischaemia when the rate-pressure product had decreased by 79% of its pre-ischaemic value, bound Pi had increased by 58% and free cytosolic [Pi] by 162%. When functional and metabolite changes were expressed as a fraction of the total change which occurred during the 12-min ischaemic period, bound Pi had the profile most similar to the rate-pressure product. Both the amount of bound Pi and free cytosolic [Pi] correlated with loss of contractile function as the ischaemic period progressed. The results show that during ischaemia, Pi is bound progressively as free cytosolic [Pi] is increased as the result of high energy phosphate hydrolysis. While these results are consistent with the possibility that Pi binding may contribute to ischaemic contractile failure, no molecular explanation for the possible effect of bound Pi on contraction has been proposed.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验