Irving M
Randall Institute, King's College London, England.
Biophys J. 1996 Apr;70(4):1830-5. doi: 10.1016/S0006-3495(96)79748-5.
Steady-state fluorescence polarization measurements provide a relatively simple method for investigating the orientation of molecular components in ordered biological systems. However, the observed fluorescence polarization ratios also depend on any mobility of the fluorophores on the time scale of the fluorescence lifetime. Such mobility commonly arises from incomplete immobilization of a fluorescent probe on the macromolecule of interest. A theoretical formalism is presented for the interpretation of steady-state fluorescence polarization ratios in the presence of such rapid fluorophore motion. It is assumed that the fluorophores move freely within a cone between absorption and emission of a photon. Only one new parameter is introduced to describe fluorophore motion, the semi-angle of the cone, and this can be measured in separate experiments on an isotropic system. The fluorophore orientations are assumed to have cylindrical symmetry, but the symmetry axis need not be in the same plane as the center axes of the absorption and emission cones. This geometry applies to muscle and other biological fibers.
稳态荧光偏振测量提供了一种相对简单的方法来研究有序生物系统中分子成分的取向。然而,观察到的荧光偏振比还取决于荧光团在荧光寿命时间尺度上的任何移动性。这种移动性通常源于荧光探针在感兴趣的大分子上固定不完全。本文提出了一种理论形式,用于解释在存在这种快速荧光团运动的情况下的稳态荧光偏振比。假设荧光团在吸收和发射光子之间的圆锥体内自由移动。仅引入一个新参数来描述荧光团运动,即圆锥体的半角,并且可以在各向同性系统的单独实验中测量该参数。假设荧光团取向具有圆柱对称性,但对称轴不必与吸收和发射圆锥体的中心轴在同一平面内。这种几何结构适用于肌肉和其他生物纤维。