Watanabe K, Kitamura K, Suzuki Y
Department of Agricultural Chemistry, Kyoto Prefectural University, Japan.
Appl Environ Microbiol. 1996 Jun;62(6):2066-73. doi: 10.1128/aem.62.6.2066-2073.1996.
To identify the critical sites for protein thermostabilization by proline substitution, the gene for oligo-1,6- glucosidase from a thermophilic Bacillus coagulans strain, ATCC 7050, was cloned as a 2.4-kb DNA fragment and sequenced. In spite of a big difference in their thermostabilities, B. coagulans oligo-1,6-glucosidase had a large number of points in its primary structure identical to respective points in the same enzymes from a mesophilic Bacillus cereus strain, ATCC 7064 (57%), and an obligately thermophilic Bacillus thermoglucosidasius strain, KP1006 (59%). The number of prolines (19 for B. cereus oligo-1,6-glucosidase, 24 for B. coagulans enzyme, and 32 for B. thermoglucosidasius enzyme) was observed to increase with the rise in thermostabilities of the oligo-1,6-glucosidases. Classification of proline residues in light of the amino acid sequence alignment and the protein structure revealed by X-ray crystallographic analysis also supported this tendency. Judging from proline residues occurring in B. coagulans oligo-1,6-glucosidase and the structural requirement for proline substitution (second site of the beta turn and first turn of the alpha helix) (K. Watanabe, T. Masuda, H. Ohashi, H. Mihara, and Y. Suzuki, Eur. J. Biochem. 226:277-283, 1994), the critical sites for thermostabilization were found to be Lys-121, Glu-290, Lys-457, and Glu-487 in B. cereus oligo-1,6-glucosidase. With regard to protein evolution, the oligo-1,6-glucosidases very likely follow the neutral theory. The adaptive mutations of the oligo-1,6-glucosidases that appear to increase thermostability are consistent with the substitution of proline residues for neutrally occurring residues. It is concluded that proline substitution is an important factor for the selection of thermostability in oligo-1,6-glucosidases.
为了确定通过脯氨酸取代实现蛋白质热稳定性的关键位点,从嗜热凝结芽孢杆菌菌株ATCC 7050中克隆了编码寡聚-1,6-葡萄糖苷酶的基因,作为一个2.4 kb的DNA片段并进行测序。尽管嗜热凝结芽孢杆菌寡聚-1,6-葡萄糖苷酶与嗜温蜡样芽孢杆菌菌株ATCC 7064(57%)和专性嗜热嗜热葡萄糖苷芽孢杆菌菌株KP1006(59%)的同一种酶在热稳定性上有很大差异,但其一级结构中有大量位点相同。观察到脯氨酸的数量(蜡样芽孢杆菌寡聚-1,6-葡萄糖苷酶有19个,嗜热凝结芽孢杆菌酶有24个,嗜热葡萄糖苷芽孢杆菌酶有32个)随着寡聚-1,6-葡萄糖苷酶热稳定性的提高而增加。根据氨基酸序列比对以及X射线晶体学分析揭示的蛋白质结构对脯氨酸残基进行分类也支持了这一趋势。从嗜热凝结芽孢杆菌寡聚-1,6-葡萄糖苷酶中出现的脯氨酸残基以及脯氨酸取代的结构要求(β转角的第二个位点和α螺旋的第一个转角)(K.渡边、T.增田、H.大桥、H.三原和Y.铃木,《欧洲生物化学杂志》226:277 - 283,1994)判断,蜡样芽孢杆菌寡聚-1,6-葡萄糖苷酶热稳定性的关键位点为Lys-121、Glu-290、Lys-457和Glu-487。关于蛋白质进化,寡聚-!,6-葡萄糖苷酶很可能遵循中性理论。似乎能提高热稳定性的寡聚-1,6-葡萄糖苷酶的适应性突变与脯氨酸残基取代中性发生的残基是一致的。得出结论,脯氨酸取代是寡聚-1,6-葡萄糖苷酶热稳定性选择的一个重要因素。