Suppr超能文献

The mechanism of inhibition of collagenase by TIMP-1.

作者信息

Taylor K B, Windsor L J, Caterina N C, Bodden M K, Engler J A

机构信息

Department of Biochemistry and Molecular Genetics, and the Research Center for Oral Biology, Schools of Medicine and Dentistry, University of Alabama at Birmingham, 35294-0005, USA.

出版信息

J Biol Chem. 1996 Sep 27;271(39):23938-45. doi: 10.1074/jbc.271.39.23938.

Abstract

Tissue inhibitor of metalloproteinase-I (TIMP-1) is a slow, tight-binding inhibitor of fibroblast-type collagenase. Time-course data from inhibition experiments were analyzed by graphic analysis, by nonlinear regression of the analytic integrals of the rate equations and by nonlinear regression with numeric integration of the rate equations. With the same assumptions, approximations and data, all three methods of analysis produced the same model preferences and values for the kinetic parameters. The time-course data for the inhibition of fibroblast-type collagenase by TIMP-1 are best described by the equations for a noncompetitive two-step mechanism, in which an inactive, rapidly formed, reversible complex slowly forms an inactive, tight complex. However, from the analysis of data from experiments at concentrations of TIMP-1 comparable to that of collagenase, it is apparent that free TIMP-1 also functions in the breakdown of the tight complex. The rapidly formed complex has a dissociation constant of 8 nM and reacts to the tight complex with a first-order rate constant of 0.003 s-1. The back reaction of the tight complex to the rapid complex has a second-order rate constant of 5 x 10(4) M-1 s-1. The resulting global dissociation constant of the tight complex is 0.1 nM at 3 nM TIMP-1 and collagenase concentration. Collagenase without the carboxyl-terminal domain (mini-collagenase) is inhibited by TIMP-1 according to a mechanism, in which the rapidly formed complex has such a high dissociation constant (247 nM) that it effectively constitutes a one-step mechanism, in which TIMP-1 binds with an apparent second-order rate constant of 9.6 x 10(4) mol-1 s-1 and the enzyme-TIMP-1 complex dissociates with a first order rate constant of 0.00026 s-1. The apparent global dissociation constant for the tight complex (2.7 nM) is higher than that for the fibroblast-type collagenase. Participation of TIMP-1 in the dissociation is not demonstrable. Therefore, the carboxyl-terminal domain of fibroblast-type collagenase is important for the initial, rapid binding of TIMP-1 and the initial complex contributes to the overall binding.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验