Fishman H M, Moore L E, Poussart D
Biophys J. 1977 Aug;19(2):177-83. doi: 10.1016/S0006-3495(77)85578-1.
The complex admittance of squid (Loligo pealei) axon was measured rapidly (within 1 s) with pseudo-random small signals and discrete Fourier transform techniques under guarded, "space-clamp" conditions and during suppression of ion conduction. Asymmetry currents were measured by paired step clam pulses of +/-70 mV from a holding potential of -97 mV and gave an apparent capacitance of 0.36 muF/cm2. However, the admittance data showed no change in capacitance at holding potentials from -97 to -67 mV and gave a decrease of 0.07 of 0.15 muF/cm2 at -37 mV. The failure to observe a capacitance increase at low membrane potentials suggests the following possibilities: (a) the asymmetry current is a displacement current that inactivates completely with time, and (b) the asymmetry current is not a displacement current and arises from large signal effects (i.e., delayed nonlinearity in ionic current) on the membrane.