Suppr超能文献

K+ conduction description from the low frequency impedance and admittance of squid axon.

作者信息

Fishman H M, Poussart D J, Moore L E, Siebenga E

出版信息

J Membr Biol. 1977 Apr 22;32(3-4):255-90. doi: 10.1007/BF01905222.

Abstract

The form of power spectra of K+ conduction fluctuations in patches of squid axon suggested that K+ conduction kinetics are higher than first order (Fishman, Moore & Poussart, 1975, J. Membrane Biol. 24:305). To obtain an alternative description of ion conduction kinetics consistent with spontaneous fluctuations, the complex impedance and admittance of squid (Loligo pealei) axon were measured at low frequencies (1-1000 Hz) with a four electrode system using white Gaussian noise as a stochastic perturbation. As predicted from the spontaneous noise measurements, a low frequency impedance feature is observed between 1 and 30 Hz which is voltage and temperature dependent, disappears after substantial reduction in [Ki+], and is unaffected by the state of Na+ conduction or active transport. These measurements confirm and constitute strong support for the patch noise measurements and interpretations. The linearized Hodgkin-Huxley (HH) equations do not produce the low frequency feature since first order ion conduction kinetics are assumed. Computation of diffusion polarization effects associated with the axon sheath gives a qualitative account of the low frequency feature, but the potential dependence is opposite to that of the data. Thus, K+ conduction kinetics in the axon are not adequately described by a single first order process. In addition, significant changes in HH parameter values were required to describe the usual impedance (resonance) feature in Loligo pealei axon data.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验