Decaestecker C, Camby I, Nagy N, Brotchi J, Kiss R, Salmon I
Laboratoire d'Histologie, Faculté de Médecine, Université Libre de Bruxelles, Brussels, Belgium.
Brain Pathol. 1998 Jan;8(1):29-38. doi: 10.1111/j.1750-3639.1998.tb00131.x.
We propose an original methodology which improves the accuracy of the prognostic values associated with conventional morphologically-based classifications in supratentorial astrocytic tumors in the adult. This methodology may well help neuropathologists, who must determine the aggressiveness of astrocytic tumors on the basis of morphological criteria. The proposed methodology comprises two distinct steps, i.e. i) the production of descriptive quantitative variables (related to DNA ploidy level and morphonuclear aspects) by means of computer-assisted microscopy and ii) data analysis based on an artificial intelligence-related method, i.e. the decision tree approach. Three prognostic problems were considered on a series of 250 astrocytic tumors including 39 astrocytomas (AST), 47 anaplastic astrocytomas (ANA) and 164 glioblastomas (GBM) identified in accordance with the WHO classification. These three problems concern i) variations in the aggressiveness level of the high-grade tumors (ANA and GBM), ii) the detection of the aggressive as opposed to the less aggressive low-grade astrocytomas (AST), and iii) the detection of the aggressive as opposed to the less aggressive anaplastic astrocytomas (ANA). Our results show that the proposed computer-aided methodology improves conventional prognosis based on conventional morphologically-based classifications. In particular, this methodology enables some reference points to be established on the biological continuum according to the sequence AST-->ANA-->GBM.
我们提出了一种原创方法,可提高与成人幕上星形细胞瘤传统形态学分类相关的预后值的准确性。这种方法可能会对神经病理学家有所帮助,他们必须根据形态学标准来确定星形细胞瘤的侵袭性。所提出的方法包括两个不同的步骤,即:i)通过计算机辅助显微镜生成描述性定量变量(与DNA倍体水平和形态核方面相关),以及ii)基于人工智能相关方法(即决策树方法)进行数据分析。我们对一系列250例星形细胞瘤进行了三个预后问题的研究,其中包括根据世界卫生组织分类确定的39例星形细胞瘤(AST)、47例间变性星形细胞瘤(ANA)和164例胶质母细胞瘤(GBM)。这三个问题涉及:i)高级别肿瘤(ANA和GBM)侵袭性水平的变化,ii)检测侵袭性强的低级别星形细胞瘤(AST)与侵袭性较弱的低级别星形细胞瘤,以及iii)检测侵袭性强的间变性星形细胞瘤(ANA)与侵袭性较弱的间变性星形细胞瘤。我们的结果表明,所提出的计算机辅助方法改善了基于传统形态学分类的传统预后。特别是,这种方法能够根据AST→ANA→GBM的顺序在生物学连续体上建立一些参考点。