Suppr超能文献

对不完整重复测量数据的意向性分析。

Intention-to-treat analyses for incomplete repeated measures data.

作者信息

Hogan J W, Laird N M

机构信息

Center for Statistical Sciences, Brown University, Providence, Rhode Island 02912, USA.

出版信息

Biometrics. 1996 Sep;52(3):1002-17.

PMID:8805765
Abstract

In a randomized longitudinal clinical trial designed to evaluate two or more rival treatments, an intent-to-treat analysis requires inclusion of all randomized patients, regardless of whether they remain on protocol for the duration of the study. We propose a piecewise linear random effects model for analyzing longitudinal data where the multivariate outcome can depend upon time spent on treatment. The model assumes that data are available on a random sample of subjects after treatment is terminated, and allows either a pragmatic or explanatory analysis (as defined by Schwartz and Lellouch, 1967, Journal of Chronic Diseases 20, 637-648). Full maximum likelihood estimation of the model parameters is carried out using widely available statistical software for repeated measures with missing data and for nonparametric survival curve estimation. Data from a national, multicenter pediatric AIDS clinical trial are analyzed to illustrate implementation and interpretation of the model.

摘要

在一项旨在评估两种或更多种相互竞争治疗方法的随机纵向临床试验中,意向性分析要求纳入所有随机分组的患者,无论他们在研究期间是否始终遵循方案。我们提出一种分段线性随机效应模型,用于分析纵向数据,其中多变量结果可能取决于接受治疗的时间。该模型假定在治疗终止后可获得受试者随机样本的数据,并允许进行务实分析或解释性分析(如施瓦茨和勒卢什在1967年《慢性病杂志》第20卷第637 - 648页所定义)。使用广泛可用的统计软件对模型参数进行完全最大似然估计,该软件用于处理有缺失数据的重复测量以及非参数生存曲线估计。对一项全国性多中心儿科艾滋病临床试验的数据进行分析,以说明该模型的实施和解释。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验