Nowak G, Bucha E
Max-Planck-Gesellschaft, Pharmakologische Hämostaseologie, Friedrich-Schiller-Universität, Jena, Germany.
Semin Thromb Hemost. 1996;22(2):197-202. doi: 10.1055/s-2007-999008.
Recent clinical studies using hirudin as anticoagulant have demonstrated that an efficient method to determine the current blood level of hirudin is imperative for exact dose finding and adjustment. Only the exact determination of the hirudin content in blood, performed within a few minutes, prevents overdosage involving side effects or, otherwise, a subtherapeutic dose regimen. Therefore, a method for rapid, sensitive, and reproducible measurement of hirudin in blood, plasma, and other body fluids has been developed. The method, which is based on coagulation measurement, is called ecarin clotting time (ECT). In this test, ecarin, a purified enzyme of the Echis carinatus snake venom, acts as a prothrombin activator. In contrast to the "solid phase" prothrombin activation by prothrombinase, the ecarin-induced prothrombin activation proceeds in an alternative way, i.e., without the need of cofactors, resulting in intermediates such as meizothrombin. Compared to thrombin, meizothrombin has a lower procoagulant activity, but it still binds hirudin, which leads to the inhibition of meizothrombin. Depending on the sample's concentration of hirudin, ecarin forms a residual, nonhirudin-bound amount of intermediates of the prothrombin-thrombin conversion that are able to concentration-dependently convert fibrinogen to fibrin. There is an excellent linear correlation between ECT prolongation and the hirudin content of the sample in a range from 50 to 5,000 ng/mL blood or plasma. This allows immediate measurement not only of the therapeutic blood level of hirudin, but also of its concentration in blood following under- or overdosage. The ECT method is nearly independent of variations in the sample's content of fibrinogen (from 60% to 100%) and prothrombin (from 20% to 100%.) Heparin is not able to catalyze the very low antithrombin inhibition of meizothrombin. Therefore, it is also possible to determine hirudin in blood containing varying amounts of heparin. Another advantage of the method is that it can be applied to different mechanical measuring systems used in coagulation diagnostics.
近期使用水蛭素作为抗凝剂的临床研究表明,对于精确确定剂量和调整剂量而言,一种测定水蛭素当前血液水平的有效方法势在必行。只有在几分钟内准确测定血液中的水蛭素含量,才能防止出现涉及副作用的过量用药情况,否则就是亚治疗剂量方案。因此,已开发出一种用于快速、灵敏且可重复地测量血液、血浆及其他体液中水蛭素的方法。该方法基于凝血测量,称为蛇毒凝血时间(ECT)。在这项检测中,蛇毒凝血酶(一种从锯鳞蝰蛇毒中纯化得到的酶)作为凝血酶原激活剂。与凝血酶原酶对凝血酶原的“固相”激活不同,蛇毒凝血酶诱导的凝血酶原激活以另一种方式进行,即无需辅因子,会产生诸如中间凝血酶等中间体。与凝血酶相比,中间凝血酶的促凝活性较低,但它仍能结合水蛭素,从而导致中间凝血酶受到抑制。根据样品中水蛭素的浓度,蛇毒凝血酶会形成一定量未与水蛭素结合的凝血酶原 - 凝血酶转化中间体,这些中间体能够浓度依赖性地将纤维蛋白原转化为纤维蛋白。在血液或血浆中水蛭素含量为50至5000 ng/mL的范围内,蛇毒凝血时间延长与样品中的水蛭素含量之间存在极佳的线性相关性。这不仅能够即时测量水蛭素的治疗性血液水平,还能测量用药不足或过量后其在血液中的浓度。蛇毒凝血时间方法几乎不受样品中纤维蛋白原含量(从60%至100%)和凝血酶原含量(从20%至100%)变化的影响。肝素无法催化对中间凝血酶的极低抗凝血酶抑制作用。因此,也能够在含有不同量肝素的血液中测定水蛭素。该方法的另一个优点是它可应用于凝血诊断中使用的不同机械测量系统。