Ye X, Kumar R A, Patel D J
Cellular Biochemistry & Biophysics Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA.
Chem Biol. 1995 Dec;2(12):827-40. doi: 10.1016/1074-5521(95)90089-6.
In lentiviruses such as human immunodeficiency virus (HIV) and bovine immunodeficiency virus (BIV), the Tat (trans-activating) protein enhances transcription of the viral RNA by complexing to the 5'-end of the transcribed mRNA, at a region known as TAR (the trans-activation response element). Identification of the determinants that account for specific molecular recognition requires a high resolution structure of the Tat peptide-TAR RNA complex.
We report here on the structural characterization of a complex of the recognition domains of BIV Tat and TAR in aqueous solution using a combination of NMR and molecular dynamics. The 17-mer Tat peptide recognition domain folds into a beta-hairpin and penetrates in an edge-on orientation deep into a widened major groove of the 28-mer TAR RNA recognition domain in the complex. The RNA fold is defined, in part, by two uracil bulged bases; U12 has a looped-out conformation that widens the major groove and U10 forms a U.AU base triple that buttresses the RNA helix. Together, these bulged bases induce a approximately 40 degree bend between the two helical stems of the TAR RNA in the complex. A set of specific intermolecular hydrogen bonds between arginine side chains and the major-groove edge of guanine residues contributes to sequence specificity. These peptide-RNA contacts are complemented by other intermolecular hydrogen bonds and intermolecular hydrophobic packing contacts involving glycine and isoleucine side chains.
We have identified a new structural motif for protein-RNA recognition, a beta-hairpin peptide that interacts with the RNA major groove. Specificity is associated with formation of a novel RNA structural motif, a U.AU base triple, which facilitates hydrogen bonding of an arginine residue to a guanine and to a backbone phosphate. These results should facilitate the design of inhibitors that can disrupt HIV Tat-TAR association.
在诸如人类免疫缺陷病毒(HIV)和牛免疫缺陷病毒(BIV)等慢病毒中,反式激活蛋白(Tat)通过与转录的mRNA的5′末端结合,在一个称为反式激活应答元件(TAR)的区域增强病毒RNA的转录。确定负责特定分子识别的决定因素需要Tat肽 - TAR RNA复合物的高分辨率结构。
我们在此报告使用核磁共振(NMR)和分子动力学相结合的方法,对水溶液中BIV Tat和TAR识别结构域复合物进行的结构表征。17聚体Tat肽识别结构域折叠成一个β发夹结构,并以边缘对齐的方向深入复合物中28聚体TAR RNA识别结构域变宽的大沟。RNA折叠部分由两个尿嘧啶凸起碱基定义;U12具有环出构象,使大沟变宽,U10形成一个U·AU碱基三联体,支撑RNA螺旋。这些凸起碱基共同导致复合物中TAR RNA的两个螺旋茎之间产生约40度的弯曲。精氨酸侧链与鸟嘌呤残基大沟边缘之间的一组特定分子间氢键有助于序列特异性。这些肽 - RNA接触由其他分子间氢键以及涉及甘氨酸和异亮氨酸侧链的分子间疏水堆积接触补充。
我们确定了一种新的蛋白质 - RNA识别结构基序,即与RNA大沟相互作用的β发夹肽。特异性与一种新型RNA结构基序的形成相关,即U·AU碱基三联体,它促进精氨酸残基与鸟嘌呤和主链磷酸之间的氢键形成。这些结果应有助于设计能够破坏HIV Tat - TAR结合的抑制剂。