Suppr超能文献

Enhanced tumorigenic behavior of glioblastoma cells expressing a truncated epidermal growth factor receptor is mediated through the Ras-Shc-Grb2 pathway.

作者信息

Prigent S A, Nagane M, Lin H, Huvar I, Boss G R, Feramisco J R, Cavenee W K, Huang H S

机构信息

University of California, San Diego Cancer Center, San Diego, La Jolla, California 92093-0684, USA.

出版信息

J Biol Chem. 1996 Oct 11;271(41):25639-45. doi: 10.1074/jbc.271.41.25639.

Abstract

A mutant epidermal growth factor receptor (DeltaEGFR) containing a deletion of 267 amino acids from the extracellular domain is common in human glioblastomas. We have previously shown that the mutant receptor fails to bind EGF, is constitutively phosphorylated, and confers upon U87MG glioblastoma cells expressing it (U87MG. DeltaEGFR), an increased ability to form tumors in mice. Here we demonstrate that the constitutively phosphorylated DeltaEGFR enhances growth of glioblastoma cells through increased activity of Ras: 1) there was an increase in the proportion of Ras present in the GTP-bound form, and 2) introduction of neutralizing anti-Ras 259 antibodies into U87MG and U87MG.DeltaEGFR cells by microinjection inhibited DNA synthesis to the same low level in both cell populations. We also show that the truncated EGF receptor constitutively associates with the adapter proteins Shc and Grb2 which are involved in the recruitment of Ras to activated receptors. Several derivatives of DeltaEGFR containing single, or multiple mutations at critical autophosphorylation sites were constructed and used to demonstrate that the major Shc binding site is Tyr-1148, and that Grb2 association occurs primarily through Tyr-1068. We conclude that the increased tumorigenic potential of glioblastoma cells expressing the truncated EGF receptor is due at least in part to Ras activation presumably involving the Shc and Grb2 adapter proteins.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验