Suppr超能文献

Function, structure and evolution of fructose-1,6-bisphosphatase.

作者信息

Marcus F, Rittenhouse J, Gontero B, Harrsch P B

机构信息

Department of Biological Chemistry and Structure, University of Health Sciences, Chicago Medical School, Illinois 60064, USA.

出版信息

Arch Biol Med Exp. 1987;20(3-4):371-8.

PMID:8816077
Abstract

The hydrolysis of fructose-1,6-bisphosphate to fructose-6-phosphate is a key reaction of carbohydrate metabolism. The enzyme that catalyzes this reaction, fructose-1,6-bisphosphatase, appears to be present in all forms of living organisms. Regulation of the enzyme activity, however, occurs by a variety of distinct mechanisms. These include AMP inhibition (most sources), cyclic AMP-dependent phosphorylation (yeast), and light-dependent activation (chloroplast). In this short review, we have analyzed the function of several fructose-1,6-bisphosphatases and we have made a comparison of partial amino acid sequences obtained from the enzymes of the yeast Saccharomyces cerevisiae, Escherichia coli, and spinach chloroplasts with the known entire amino acid sequence of a mammalian gluconeogenic fructose-1,6-bisphosphatase. These results demonstrate a very high degree of sequence conservation, suggesting a common evolutionary origin for all fructose-1,6-bisphosphatases.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验