Suppr超能文献

果糖-1,6-二磷酸酶:信息传递。

Fructose 1,6-phosphatase: getting the message across.

机构信息

School of Pharmacy and Biomolecular Sciences, University of Brighton, Huxley Building, Lewes Road, Brighton BN2 4GJ, U.K.

出版信息

Biosci Rep. 2019 Mar 6;39(3). doi: 10.1042/BSR20190124. Print 2019 Mar 29.

Abstract

Fructose 1,6-phosphatase (FBPase) is a key enzyme in gluconeogenesis. It is a potential drug target in the treatment of type II diabetes. The protein is also associated with a rare inherited metabolic disease and some cancer cells lack FBPase activity which promotes glycolysis facilitating the Warburg effect. Thus, there is interest in both inhibiting the enzyme (for diabetes treatment) and restoring its activity (in relevant cancers). The mammalian enzyme is tetrameric, competitively inhibited by Fructose 2,6-phosphate and negatively allosterically regulated by AMP. This allosteric regulation requires information transmission between the AMP binding site and the active site of the enzyme. A recent paper by Topaz et al. ( (2019) , pii:BSR20180960) has added additional detail to our understanding of this information transmission process. Two residues in the AMP binding site (Lys and Tyr) were shown to be involved in initiating the message between the two sites. This tyrosine residue has recently be shown to be important with protein's interaction with the antidiabetic drug metformin. A variant designed to increase metal ion affinity (M248D) resulted in a five-fold increase in enzymatic activity. Interestingly alterations of two residues at the subunit interfaces (Tyr and Met) resulted in increased responsiveness to AMP. Overall, these findings may have implications in the design of novel FBPase inhibitors or activators.

摘要

果糖-1,6-二磷酸酶(FBPase)是糖异生的关键酶。它是治疗 2 型糖尿病的潜在药物靶点。该蛋白还与一种罕见的遗传性代谢疾病有关,一些癌细胞缺乏 FBPase 活性,促进糖酵解,促进沃伯格效应。因此,人们对抑制该酶(用于糖尿病治疗)和恢复其活性(在相关癌症中)都感兴趣。哺乳动物酶是四聚体,受果糖-2,6-二磷酸的竞争性抑制,并受 AMP 的负变构调节。这种变构调节需要 AMP 结合位点和酶活性位点之间的信息传递。Topaz 等人最近的一篇论文((2019),pii:BSR20180960)为我们理解这个信息传递过程提供了更多细节。AMP 结合位点中的两个残基(Lys 和 Tyr)被证明参与了两个位点之间的信息传递。最近的研究表明,这个酪氨酸残基对于该蛋白与抗糖尿病药物二甲双胍的相互作用很重要。设计用来增加金属离子亲和力的突变体(M248D)导致酶活性增加了五倍。有趣的是,亚基界面上两个残基(Tyr 和 Met)的改变导致对 AMP 的反应性增加。总的来说,这些发现可能对新型 FBPase 抑制剂或激活剂的设计有影响。

相似文献

1
Fructose 1,6-phosphatase: getting the message across.
Biosci Rep. 2019 Mar 6;39(3). doi: 10.1042/BSR20190124. Print 2019 Mar 29.
3
New insight into the binding modes of TNP-AMP to human liver fructose-1,6-bisphosphatase.
Spectrochim Acta A Mol Biomol Spectrosc. 2016 Aug 5;165:155-160. doi: 10.1016/j.saa.2016.04.002. Epub 2016 Apr 8.
7
Structure-guided design of AMP mimics that inhibit fructose-1,6-bisphosphatase with high affinity and specificity.
J Am Chem Soc. 2007 Dec 19;129(50):15480-90. doi: 10.1021/ja074869u. Epub 2007 Nov 28.
8
AMP inhibition of pig kidney fructose-1,6-bisphosphatase.
Biochim Biophys Acta. 2001 Jul 9;1548(1):66-71. doi: 10.1016/s0167-4838(01)00218-7.
9
Novel allosteric activation site in Escherichia coli fructose-1,6-bisphosphatase.
J Biol Chem. 2006 Jul 7;281(27):18386-93. doi: 10.1074/jbc.M602553200. Epub 2006 May 2.

引用本文的文献

1
Impact of Cold Stress on Hepatopancreas Transcriptomic and Metabolomic in Red Swamp Crayfish .
Int J Mol Sci. 2025 Jan 30;26(3):1221. doi: 10.3390/ijms26031221.
2
Glycogenesis and glyconeogenesis from glutamine, lactate and glycerol support human macrophage functions.
EMBO Rep. 2024 Dec;25(12):5383-5407. doi: 10.1038/s44319-024-00278-4. Epub 2024 Oct 18.
3
Metabolic regulation of endothelial senescence.
Front Cardiovasc Med. 2023 Aug 15;10:1232681. doi: 10.3389/fcvm.2023.1232681. eCollection 2023.
5
Insight into the physiological and pathological roles of USP44, a potential tumor target (Review).
Oncol Lett. 2022 Nov 1;24(6):455. doi: 10.3892/ol.2022.13575. eCollection 2022 Dec.
6
PTEN loss promotes Warburg effect and prostate cancer cell growth by inducing FBP1 degradation.
Front Oncol. 2022 Sep 27;12:911466. doi: 10.3389/fonc.2022.911466. eCollection 2022.
7
A detailed review on the phytochemical profiles and anti-diabetic mechanisms of .
Heliyon. 2022 Apr 6;8(4):e09253. doi: 10.1016/j.heliyon.2022.e09253. eCollection 2022 Apr.
8
A novel variant of fructose-1,6-bisphosphatase gene identified in an adult with newly diagnosed hepatitis C.
JIMD Rep. 2022 Feb 17;63(2):109-113. doi: 10.1002/jmd2.12256. eCollection 2022 Mar.
9
NHERF1 Loss Upregulates Enzymes of the Pentose Phosphate Pathway in Kidney Cortex.
Antioxidants (Basel). 2020 Sep 14;9(9):862. doi: 10.3390/antiox9090862.

本文引用的文献

2
In silico screening of a novel scaffold for fructose-1,6-bisphosatase (FBPase) inhibitors.
J Mol Graph Model. 2019 Jan;86:142-148. doi: 10.1016/j.jmgm.2018.10.017. Epub 2018 Oct 20.
3
Metformin reduces liver glucose production by inhibition of fructose-1-6-bisphosphatase.
Nat Med. 2018 Sep;24(9):1395-1406. doi: 10.1038/s41591-018-0159-7. Epub 2018 Aug 27.
4
International practices in the dietary management of fructose 1-6 biphosphatase deficiency.
Orphanet J Rare Dis. 2018 Jan 25;13(1):21. doi: 10.1186/s13023-018-0760-3.
5
Fructose-1,6-bisphosphatase inhibitors: A new valid approach for management of type 2 diabetes mellitus.
Eur J Med Chem. 2017 Dec 1;141:473-505. doi: 10.1016/j.ejmech.2017.09.029. Epub 2017 Sep 21.
6
Fructose‑1,6‑bisphosphatase‑1 decrease may promote carcinogenesis and chemoresistance in cervical cancer.
Mol Med Rep. 2017 Dec;16(6):8563-8571. doi: 10.3892/mmr.2017.7665. Epub 2017 Sep 29.
7
Allostery in enzyme catalysis.
Curr Opin Struct Biol. 2017 Dec;47:123-130. doi: 10.1016/j.sbi.2017.08.002. Epub 2017 Sep 1.
8
Modulating Mobility: a Paradigm for Protein Engineering?
Appl Biochem Biotechnol. 2017 Jan;181(1):83-90. doi: 10.1007/s12010-016-2200-y. Epub 2016 Jul 23.
9
10
T-to-R switch of muscle fructose-1,6-bisphosphatase involves fundamental changes of secondary and quaternary structure.
Acta Crystallogr D Struct Biol. 2016 Apr;72(Pt 4):536-50. doi: 10.1107/S2059798316001765. Epub 2016 Mar 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验