Suppr超能文献

在流行病学框架中量化水传播病原体风险。

Quantifying water pathogen risk in an epidemiological framework.

作者信息

Eisenberg J N, Seto E Y, Olivieri A W, Spear R C

机构信息

School of Public Health, University of California, Berkeley 94720, USA.

出版信息

Risk Anal. 1996 Aug;16(4):549-63. doi: 10.1111/j.1539-6924.1996.tb01100.x.

Abstract

Traditionally, microbial risk assessors have used point estimates to evaluate the probability that an individual will become infected. We developed a quantitative approach that shifts the risk characterization perspective from point estimate to distributional estimate, and from individual to population. To this end, we first designed and implemented a dynamic model that tracks traditional epidemiological variables such as the number of susceptible, infected, diseased, and immune, and environmental variables such as pathogen density. Second, we used a simulation methodology that explicitly acknowledges the uncertainty and variability associated with the data. Specifically, the approach consists of assigning probability distributions to each parameter, sampling from these distributions for Monte Carlo simulations, and using a binary classification to assess the output of each simulation. A case study is presented that explores the uncertainties in assessing the risk of giardiasis when swimming in a recreational impoundment using reclaimed water. Using literature-based information to assign parameters ranges, our analysis demonstrated that the parameter describing the shedding of pathogens by infected swimmers was the factor that contributed most to the uncertainty in risk. The importance of other parameters was dependent on reducing the a priori range of this shedding parameter. By constraining the shedding parameter to its lower subrange, treatment efficiency was the parameter most important in predicting whether a simulation resulted in prevalences above or below non outbreak levels. Whereas parameters associated with human exposure were important when the shedding parameter was constrained to a higher subrange. This Monte Carlo simulation technique identified conditions in which outbreaks and/or nonoutbreaks are likely and identified the parameters that most contributed to the uncertainty associated with a risk prediction.

摘要

传统上,微生物风险评估人员使用点估计来评估个体感染的概率。我们开发了一种定量方法,将风险特征描述的视角从点估计转变为分布估计,从个体转变为群体。为此,我们首先设计并实施了一个动态模型,该模型跟踪传统的流行病学变量,如易感者、感染者、患病者和免疫者的数量,以及环境变量,如病原体密度。其次,我们使用了一种模拟方法,该方法明确承认与数据相关的不确定性和变异性。具体而言,该方法包括为每个参数分配概率分布,从这些分布中采样进行蒙特卡罗模拟,并使用二元分类来评估每个模拟的输出。本文给出了一个案例研究,探讨了使用再生水在娱乐性蓄水池游泳时评估贾第鞭毛虫病风险的不确定性。利用基于文献的信息来确定参数范围,我们的分析表明,描述受感染游泳者病原体排放的参数是导致风险不确定性的最大因素。其他参数的重要性取决于缩小该排放参数的先验范围。通过将排放参数限制在其较低的子范围内,处理效率是预测模拟结果是否导致患病率高于或低于非暴发水平的最重要参数。而当排放参数被限制在较高的子范围内时,与人类暴露相关的参数很重要。这种蒙特卡罗模拟技术确定了可能发生暴发和/或不发生暴发的条件,并确定了对风险预测不确定性贡献最大的参数。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验