Suppr超能文献

绿色细菌绿体中的激发能转移:理论与实验研究

Excitation energy transfer in chlorosomes of green bacteria: theoretical and experimental studies.

作者信息

Fetisova Z, Freiberg A, Mauring K, Novoderezhkin V, Taisova A, Timpmann K

机构信息

A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Russia.

出版信息

Biophys J. 1996 Aug;71(2):995-1010. doi: 10.1016/S0006-3495(96)79301-3.

Abstract

A theory of excitation energy transfer within the chlorosomal antennae of green bacteria has been developed for an exciton model of aggregation of bacteriochlorophyll (BChl) c (d or e). This model of six exciton-coupled BChl chains with low packing density, approximating that in vivo, and interchain distances of approximately 2 nm was generated to yield the key spectral features found in natural antennae, i.e., the exciton level structure revealed by spectral hole burning experiments and polarization of all the levels parallel to the long axis of the chlorosome. With picosecond fluorescence spectroscopy it was demonstrated that the theory explains the antenna-size-dependent kinetics of fluorescence decay in chlorosomal antenna, measured for intact cells of different cultures of the green bacterium C. aurantiacus, with different chlorosomal antenna size determined by electron microscopic examination of the ultrathin sections of the cells. The data suggest a possible mechanism of excitation energy transfer within the chlorosome that implies the formation of a cylindrical exciton, delocalized over a tubular aggregate of BChl c chains, and Forster-type transfer of such a cylindrical exciton between the nearest tubular BChl c aggregates as well as to BChl a of the baseplate.

摘要

针对细菌叶绿素(BChl)c(d或e)聚集的激子模型,已建立了绿细菌叶绿体天线内激发能转移理论。该模型由六条激子耦合的BChl链组成,堆积密度低,近似于体内情况,链间距离约为2 nm,旨在产生天然天线中发现的关键光谱特征,即光谱烧孔实验揭示的激子能级结构以及所有能级平行于叶绿体长轴的极化。通过皮秒荧光光谱证明,该理论解释了叶绿体天线中荧光衰减的天线大小依赖性动力学,这是针对橙色绿菌不同培养物的完整细胞测量的,不同培养物的叶绿体天线大小通过对细胞超薄切片的电子显微镜检查确定。数据表明了叶绿体中激发能转移的一种可能机制,这意味着形成一个圆柱形激子,其在BChl c链的管状聚集体上离域,以及这种圆柱形激子在最近的管状BChl c聚集体之间以及向基板的BChl a进行福斯特型转移。

相似文献

1
Excitation energy transfer in chlorosomes of green bacteria: theoretical and experimental studies.
Biophys J. 1996 Aug;71(2):995-1010. doi: 10.1016/S0006-3495(96)79301-3.
3
Functioning of oligomeric-type light-harvesting antenna.
Biochem Mol Biol Int. 1997 Jun;42(1):21-7. doi: 10.1080/15216549700202391.
4
Structure of bacteriochlorophyll aggregates in chlorosomes of green bacteria: a spectral hole burning study.
Biochem Mol Biol Int. 1996 Oct;40(2):243-52. doi: 10.1080/15216549600201732.
10
Utilization of blue-green light by chlorosomes from the photosynthetic bacterium Chloroflexus aurantiacus: Ultrafast excitation energy conversion and transfer.
Biochim Biophys Acta Bioenerg. 2021 Jun 1;1862(6):148396. doi: 10.1016/j.bbabio.2021.148396. Epub 2021 Feb 11.

引用本文的文献

1
Contrasting packing modes for tubular assemblies in chlorosomes.
Photosynth Res. 2024 Aug;161(1-2):105-115. doi: 10.1007/s11120-024-01089-3. Epub 2024 Mar 27.
2
Variability of aggregation extent of light-harvesting pigments in peripheral antenna of Chloroflexus aurantiacus.
Photosynth Res. 2017 Sep;133(1-3):343-356. doi: 10.1007/s11120-017-0374-y. Epub 2017 Mar 30.
4
Theory of excitation energy transfer: from structure to function.
Photosynth Res. 2009 Nov-Dec;102(2-3):471-85. doi: 10.1007/s11120-009-9472-9.
6
Low-temperature fluorescence from single chlorosomes, photosynthetic antenna complexes of green filamentous and sulfur bacteria.
Biophys J. 2006 Nov 15;91(10):3787-96. doi: 10.1529/biophysj.106.084178. Epub 2006 Sep 1.

本文引用的文献

1
Linear dichroism of chlorosomes from chloroflexus aurantiacus in compressed gels and electric fields.
Biophys J. 1988 Jul;54(1):65-76. doi: 10.1016/S0006-3495(88)82931-X.
2
Ultrafast energy transfer in light-harvesting chlorosomes from the green sulfur bacterium Chlorobium tepidum.
Chem Phys. 1995 May 15;194(2-3):245-58. doi: 10.1016/0301-0104(95)00019-k.
3
Spectral hole burning study of intact cells of green bacterium Chlorobium limicola.
FEBS Lett. 1993 May 24;323(1-2):159-62. doi: 10.1016/0014-5793(93)81470-k.
5
Self-assembly of chlorophyll aggregated structures.
Biosystems. 1980;12(3-4):181-94. doi: 10.1016/0303-2647(80)90016-7.
7
Isolation and development of chlorosomes in the green bacterium Chloroflexus aurantiacus.
J Bacteriol. 1981 Sep;147(3):1021-31. doi: 10.1128/jb.147.3.1021-1031.1981.
8
Chlorophyll organization in green photosynthetic bacteria.
Biochim Biophys Acta. 1980 Dec 22;594(1):33-51. doi: 10.1016/0304-4173(80)90012-9.
10
Light and oxygen regulation of the synthesis of bacteriochlorophylls a and c in Chloroflexus aurantiacus.
J Bacteriol. 1992 Aug;174(15):5021-6. doi: 10.1128/jb.174.15.5021-5026.1992.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验