Suppr超能文献

绿弯菌属橙色绿弯菌和嗜热栖热放线菌的叶绿体天线中的激子动力学。

Exciton dynamics in the chlorosomal antennae of the green bacteria Chloroflexus aurantiacus and Chlorobium tepidum.

作者信息

Prokhorenko V I, Steensgaard D B, Holzwarth A R

机构信息

Max-Planck-Institut für Strahlenchemie, D-45413, Mülheim a.d. Ruhr, Germany.

出版信息

Biophys J. 2000 Oct;79(4):2105-20. doi: 10.1016/S0006-3495(00)76458-7.

Abstract

The energy transfer processes in isolated chlorosomes from green bacteria Chlorobium tepidum and Chloroflexus aurantiacus have been studied at low temperatures (1.27 K) by two-pulse photon echo and one-color transient absorption techniques with approximately 100 fs resolution. The decay of the coherence in both types of chlorosomes is characterized by four different dephasing times stretching from approximately 100 fs up to 300 ps. The fastest component reflects dephasing that is due to interaction of bacteriochlorophylls with the phonon bath, whereas the other components correspond to dephasing due to different energy transfer processes such as distribution of excitation along the rod-like aggregates, energy exchange between different rods in the chlorosome, and energy transfer to the base plate. As a basis for the interpretation of the excitation dephasing and energy transfer pathways, a superlattice-like structural model is proposed based on recent experimental data and computer modeling of the Bchl c aggregates (1994. Photosynth. Res. 41:225-233.) This model predicts a fine structure of the Q(y) absorption band that is fully supported by the present photon echo data.

摘要

利用具有约100飞秒分辨率的双脉冲光子回波和单色瞬态吸收技术,在低温(1.27K)下研究了来自嗜热绿菌和橙色绿屈挠菌的分离的叶绿体中的能量转移过程。两种类型的叶绿体中相干性的衰减具有四个不同的退相时间,范围从约100飞秒到300皮秒。最快的成分反映了由于细菌叶绿素与声子浴相互作用引起的退相,而其他成分则对应于由于不同能量转移过程引起的退相,例如激发沿棒状聚集体的分布、叶绿体中不同棒之间的能量交换以及能量转移到底板。作为解释激发退相和能量转移途径的基础,基于最近的实验数据和Bchl c聚集体的计算机建模(1994年。光合作用研究。41:225 - 233)提出了一种超晶格状结构模型。该模型预测了Q(y)吸收带的精细结构,这得到了当前光子回波数据的充分支持。

相似文献

2
Ultrafast energy transfer in light-harvesting chlorosomes from the green sulfur bacterium Chlorobium tepidum.
Chem Phys. 1995 May 15;194(2-3):245-58. doi: 10.1016/0301-0104(95)00019-k.
4
Excitation energy transfer in chlorosomes of green bacteria: theoretical and experimental studies.
Biophys J. 1996 Aug;71(2):995-1010. doi: 10.1016/S0006-3495(96)79301-3.
5
Excitation energy transfer dynamics and excited-state structure in chlorosomes of Chlorobium phaeobacteroides.
Biophys J. 2003 Feb;84(2 Pt 1):1161-79. doi: 10.1016/S0006-3495(03)74931-5.
6
Utilization of blue-green light by chlorosomes from the photosynthetic bacterium Chloroflexus aurantiacus: Ultrafast excitation energy conversion and transfer.
Biochim Biophys Acta Bioenerg. 2021 Jun 1;1862(6):148396. doi: 10.1016/j.bbabio.2021.148396. Epub 2021 Feb 11.
8
Energy transfers in the B808-866 antenna from the green bacterium Chloroflexus aurantiacus.
Biophys J. 1998 Apr;74(4):2069-75. doi: 10.1016/S0006-3495(98)77913-5.
9
Redox effects on the excited-state lifetime in chlorosomes and bacteriochlorophyll c oligomers.
Biophys J. 1997 Jan;72(1):316-25. doi: 10.1016/S0006-3495(97)78670-3.

引用本文的文献

1
Photophysics of plasmonically enhanced self-assembled artificial light-harvesting nanoantennas.
Commun Chem. 2025 Aug 28;8(1):263. doi: 10.1038/s42004-025-01664-2.
2
Contrasting packing modes for tubular assemblies in chlorosomes.
Photosynth Res. 2024 Aug;161(1-2):105-115. doi: 10.1007/s11120-024-01089-3. Epub 2024 Mar 27.
3
Photon Energy-Dependent Ultrafast Exciton Transfer in Chlorosomes of and the Role of Supramolecular Dynamics.
J Phys Chem B. 2023 Sep 7;127(35):7581-7589. doi: 10.1021/acs.jpcb.3c05282. Epub 2023 Aug 23.
4
Ultrafast Anisotropy Decay Reveals Structure and Energy Transfer in Supramolecular Aggregates.
J Phys Chem B. 2023 Aug 31;127(34):7487-7496. doi: 10.1021/acs.jpcb.3c04719. Epub 2023 Aug 18.
6
Manifestation of Hydrogen Bonding and Exciton Delocalization on the Absorption and Two-Dimensional Electronic Spectra of Chlorosomes.
J Phys Chem B. 2023 Feb 9;127(5):1097-1109. doi: 10.1021/acs.jpcb.2c07143. Epub 2023 Jan 25.
7
8
Dynamic Disorder Drives Exciton Transfer in Tubular Chlorosomal Assemblies.
J Phys Chem B. 2020 May 21;124(20):4026-4035. doi: 10.1021/acs.jpcb.0c00441. Epub 2020 May 12.
10
One-Directional Antenna Systems: Energy Transfer from Monomers to J-Aggregates within 1D Nanoporous Aluminophosphates.
ACS Photonics. 2018 Jan 17;5(1):151-157. doi: 10.1021/acsphotonics.7b00553. Epub 2017 Oct 19.

本文引用的文献

1
The chlorophylis of green bacteria.
Biochim Biophys Acta. 1960 Jul 15;41:478-84. doi: 10.1016/0006-3002(60)90045-7.
2
Ultrafast energy transfer in light-harvesting chlorosomes from the green sulfur bacterium Chlorobium tepidum.
Chem Phys. 1995 May 15;194(2-3):245-58. doi: 10.1016/0301-0104(95)00019-k.
4
Fast energy transfer between BChl d and BChl c in chlorosomes of the green sulfur bacterium Chlorobium limicola.
Biochim Biophys Acta. 2000 Feb 24;1457(1-2):71-80. doi: 10.1016/s0005-2728(99)00112-7.
6
Structure of bacteriochlorophyll aggregates in chlorosomes of green bacteria: a spectral hole burning study.
Biochem Mol Biol Int. 1996 Oct;40(2):243-52. doi: 10.1080/15216549600201732.
7
Excitation energy transfer in chlorosomes of green bacteria: theoretical and experimental studies.
Biophys J. 1996 Aug;71(2):995-1010. doi: 10.1016/S0006-3495(96)79301-3.
8
Femtosecond probe of structural analogies between chlorosomes and bacteriochlorophyll c aggregates.
Biophys J. 1995 Sep;69(3):1100-4. doi: 10.1016/S0006-3495(95)79983-0.
9
Spectral hole burning study of intact cells of green bacterium Chlorobium limicola.
FEBS Lett. 1993 May 24;323(1-2):159-62. doi: 10.1016/0014-5793(93)81470-k.
10
Picosecond energy transfer and trapping kinetics in living cells of the green bacterium Chloroflexus aurantiacus.
Biochim Biophys Acta. 1993 Sep 13;1144(2):161-9. doi: 10.1016/0005-2728(93)90168-f.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验