Verkhivker G M, Rejto P A, Gehlhaar D K, Freer S T
Agouron Pharmaceuticals, Inc., San Diego, California 92121, USA.
Proteins. 1996 Jul;25(3):342-53. doi: 10.1002/(SICI)1097-0134(199607)25:3<342::AID-PROT6>3.0.CO;2-H.
Energy landscapes of molecular recognition are explored by performing "semi-rigid" docking of FK-506 and rapamycin with the Fukisawa binding protein (FKBP-12), and flexible docking simulations of the Ro-31-8959 and AG-1284 inhibitors with HIV-1 protease by a genetic algorithm. The requirements of a molecular recognition model to meet thermodynamic and kinetic criteria of ligand-protein docking simultaneously are investigated using a family of simple molecular recognition energy functions. The critical factor that determines the success rate in predicting the structure of ligand-protein complexes is found to be the roughness of the binding energy landscape, in accordance with a minimal frustration principle. The results suggest that further progress in structure prediction of ligand-protein complexes can be achieved by designing molecular recognition energy functions that generate binding landscapes with reduced frustration.
通过对FK - 506和雷帕霉素与藤泽结合蛋白(FKBP - 12)进行“半刚性”对接,以及利用遗传算法对Ro - 31 - 8959和AG - 1284抑制剂与HIV - 1蛋白酶进行柔性对接模拟,探索了分子识别的能量景观。使用一系列简单的分子识别能量函数,研究了分子识别模型同时满足配体 - 蛋白质对接的热力学和动力学标准的要求。根据最小受挫原则,发现决定预测配体 - 蛋白质复合物结构成功率的关键因素是结合能量景观的粗糙度。结果表明,通过设计能够生成受挫程度降低的结合景观的分子识别能量函数,可以在配体 - 蛋白质复合物的结构预测方面取得进一步进展。