Gehlhaar D K, Verkhivker G M, Rejto P A, Sherman C J, Fogel D B, Fogel L J, Freer S T
Agouron Pharmaceuticals, Inc., San Diego, CA 92121-1121, USA.
Chem Biol. 1995 May;2(5):317-24. doi: 10.1016/1074-5521(95)90050-0.
An important prerequisite for computational structure-based drug design is prediction of the structures of ligand-protein complexes that have not yet been experimentally determined by X-ray crystallography or NMR. For this task, docking of rigid ligands is inadequate because it assumes knowledge of the conformation of the bound ligand. Docking of flexible ligands would be desirable, but requires one to search an enormous conformational space. We set out to develop a strategy for flexible docking by combining a simple model of ligand-protein interactions for molecular recognition with an evolutionary programming search technique.
We have developed an intermolecular energy function that incorporates steric and hydrogen-bonding terms. The parameters in this function were obtained by docking in three different protein systems. The effectiveness of this method was demonstrated by conformationally flexible docking of the inhibitor AG-1343, a potential new drug against AIDS, into HIV-1 protease. For this molecule, which has nine rotatable bonds, the crystal structure was reproduced within 1.5 A root-mean-square deviation 34 times in 100 simulations, each requiring eight minutes on a Silicon Graphics R4400 workstation. The energy function correctly evaluates the crystal structure as the global energy minimum.
We believe that a solution of the docking problem may be achieved by matching a simple model of molecular recognition with an efficient search procedure. The necessary ingredients of a molecular recognition model include only steric and hydrogen-bond interaction terms. Although these terms are not necessarily sufficient to predict binding affinity, they describe ligand-protein interactions faithfully enough to enable a docking program to predict the structure of the bound ligand. This docking strategy thus provides an important tool for the interdisciplinary field of rational drug design.
基于计算结构的药物设计的一个重要前提是预测尚未通过X射线晶体学或核磁共振实验确定的配体 - 蛋白质复合物的结构。对于这项任务,刚性配体对接并不适用,因为它假定已知结合配体的构象。柔性配体对接是可取的,但需要在巨大的构象空间中进行搜索。我们着手通过将用于分子识别的简单配体 - 蛋白质相互作用模型与进化编程搜索技术相结合来开发一种柔性对接策略。
我们开发了一种包含空间和氢键项的分子间能量函数。该函数中的参数通过在三种不同的蛋白质系统中进行对接获得。通过将潜在的抗艾滋病新药抑制剂AG - 1343对接到HIV - 1蛋白酶中进行构象柔性对接,证明了该方法的有效性。对于这个具有九个可旋转键的分子,在100次模拟中有34次在1.5埃均方根偏差内重现了晶体结构,每次模拟在Silicon Graphics R4400工作站上需要八分钟。能量函数正确地将晶体结构评估为全局能量最小值。
我们认为,通过将简单的分子识别模型与高效的搜索程序相匹配,可以解决对接问题。分子识别模型的必要组成部分仅包括空间和氢键相互作用项。尽管这些项不一定足以预测结合亲和力,但它们对配体 - 蛋白质相互作用的描述足够准确,能够使对接程序预测结合配体的结构。因此,这种对接策略为合理药物设计的跨学科领域提供了一个重要工具。