Millett F, Miller M A, Geren L, Durham B
Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville 72701, USA.
J Bioenerg Biomembr. 1995 Jun;27(3):341-51. doi: 10.1007/BF02110103.
The reaction between cytochrome c (CC) and cytochrome c peroxidase (CcP) is a very attractive system for investigating the fundamental mechanism of biological electron transfer. The resting ferric state of CcP is oxidized by hydrogen peroxide to compound I (CMPI) containing an oxyferryl heme and an indolyl radical cation on Trp-191. CMPI is sequentially reduced to CMPII and then to the resting state CcP by two molecules of CC. In this review we discuss the use of a new ruthenium photoreduction technique and other rapid kinetic techniques to address the following important questions: (1) What is the initial electron acceptor in CMPI? (2) What are the true rates of electron transfer from CC to the radical cation and to the oxyferryl heme? (3) What are the binding domains and pathways for electron transfer from CC to the radical cation and the oxyferryl heme? (4) What is the mechanism for the complete reaction under physiological conditions?
细胞色素c(CC)与细胞色素c过氧化物酶(CcP)之间的反应是研究生物电子转移基本机制的一个非常有吸引力的体系。CcP的静止铁(Ⅲ)状态被过氧化氢氧化为化合物I(CMPI),其含有一个氧合铁血红素和色氨酸-191上的一个吲哚基阳离子自由基。CMPI通过两分子的CC依次还原为CMPII,然后再还原为静止状态的CcP。在这篇综述中,我们讨论了使用一种新的钌光还原技术和其他快速动力学技术来解决以下重要问题:(1)CMPI中的初始电子受体是什么?(2)从CC到自由基阳离子和氧合铁血红素的电子转移的真实速率是多少?(3)从CC到自由基阳离子和氧合铁血红素的电子转移的结合域和途径是什么?(4)生理条件下完整反应的机制是什么?