Menninger J R
Department of Biological Sciences, University of Iowa, Iowa City 52242-1324, USA.
J Basic Clin Physiol Pharmacol. 1995;6(3-4):229-50. doi: 10.1515/jbcpp.1995.6.3-4.229.
During protein synthesis on the ribosome, the growing peptide is linked covalently to a transfer RNA. With a certain probability this peptidyl-tRNA dissociates from the ribosome, whereupon it becomes susceptible to hydrolysis catalyzed by peptidyl-tRNA hydrolase. When placed at nonpermissive temperatures, mutant (pthts) Escherichia coli that are temperature-sensitive for the hydrolase will accumulate peptidyl-tRNA, suffer inhibition of protein synthesis, and eventually die. Treating cells with chloramphenicol before raising the temperature prevents cell death but erythromycin, other macrolides, and lincosamide antibiotics all enhance cell death. Accumulation of peptidyl-tRNA by pthts cells at high temperatures is blocked by chloramphenicol but enhanced by macrolides and lincosamides. The data are most consistent with macrolide and lincosamide antibiotics having as their primary mechanism of inhibition the stimulation of peptidyl-tRNA dissociation from the ribosome. Rather than blocking peptide bond formation or peptidyl-tRNA translocation from the A- to the P-site of the ribosome, these antibiotics allow the synthesis of small peptides which dissociate as peptidyl-tRNAs before being completed. Low doses of erythromycin and lincomycin stimulate preferentially the dissociation of peptidyl-tRNAs that are erroneous. Errors in proteins can be assessed by the time necessary to inactivate beta-galactosidase at > 55 degrees C. Whether erroneous peptidyl-tRNAs are induced by treating E. coli with streptomycin or ethanol, or by starving for an amino acid, the shortened time to inactivate beta-galactosidase is counteracted if the cells are simultaneously treated with erythromycin or lincomycin. In contrast, errors in beta-galactosidase caused by synthesis in the presence of canavanine, an arginine analogue, cannot be counteracted by the simultaneous presence of erythromycin. This result rules out any effect of the drug on post-translational mechanisms of error correction.
在核糖体上进行蛋白质合成期间,正在生长的肽共价连接到转运RNA上。这种肽基 - tRNA有一定概率从核糖体上解离,随后它易受肽基 - tRNA水解酶催化的水解作用影响。当处于非允许温度时,对水解酶温度敏感的突变型(pthts)大肠杆菌会积累肽基 - tRNA,蛋白质合成受到抑制,并最终死亡。在升高温度之前用氯霉素处理细胞可防止细胞死亡,但红霉素、其他大环内酯类抗生素和林可酰胺类抗生素都会加剧细胞死亡。pthts细胞在高温下肽基 - tRNA的积累被氯霉素阻断,但被大环内酯类和林可酰胺类抗生素增强。这些数据与大环内酯类和林可酰胺类抗生素的主要抑制机制是刺激肽基 - tRNA从核糖体上解离最为一致。这些抗生素不是阻断肽键形成或肽基 - tRNA从核糖体的A位点转移到P位点,而是允许合成小肽,这些小肽在完成之前作为肽基 - tRNA解离。低剂量的红霉素和林可霉素优先刺激错误的肽基 - tRNA的解离。蛋白质中的错误可以通过在>55摄氏度下使β - 半乳糖苷酶失活所需的时间来评估。无论错误的肽基 - tRNA是通过用链霉素或乙醇处理大肠杆菌,还是通过氨基酸饥饿诱导产生,如果细胞同时用红霉素或林可霉素处理,使β - 半乳糖苷酶失活的时间缩短都会被抵消。相比之下,在刀豆氨酸(一种精氨酸类似物)存在下合成导致的β - 半乳糖苷酶错误不能被同时存在的红霉素抵消。这一结果排除了该药物对翻译后错误校正机制的任何影响。