Suppr超能文献

多层轫致辐射靶的有效源尺寸、产额和束流轮廓。

Effective source size, yield and beam profile from multi-layered bremsstrahlung targets.

作者信息

Svensson R, Brahme A

机构信息

Department of Radiation Physics, Karolinska Institute, Stockholm, Sweden.

出版信息

Phys Med Biol. 1996 Aug;41(8):1353-79. doi: 10.1088/0031-9155/41/8/008.

Abstract

Modern conformal radiotherapy benefits from heterogeneous dose delivery using scanned narrow bremsstrahlung beams of high energy in combination with dynamic double focused multi-leaf collimation and purging magnets. When using a purging magnet to remove electrons and positrons the target space is limited and unorthodox thin multi-layered targets are needed. A computational technique has therefore been developed to determine the forward yield and the angular distributions of the bremsstrahlung beam as well as the size and location of the effective and the virtual photon point source for arbitrary multi-layer bremsstrahlung targets. The Gaussian approximation of the diffusion equation for the electrons has been used and convolved with the bremsstrahlung production process. For electrons with arbitrary emittance impinging on targets of any multi-layer and atomic number combination, the model is well applicable, at least for energies in the range 1-100 MeV. The intrinsic bremsstrahlung photon profile has been determined accurately by deconvolving the electron multiple scattering process from thin experimental beryllium target profiles. For electron pencil beams incident on a target of high density and atomic number such as tungsten, the size of the effective photon source stays at around a tenth of a millimetre. The effective photon source for low-Z materials such as Be, C and Al is located at depths from 3-7 mm in the target, decreasing with increasing atomic number. The effective photon source at off-axis positions then moves out considerably from the central axis, which should be considered when aligning collimators. For high-Z materials such as tungsten, the location of the effective photon source is at a few tenths of a millimetre deep. The virtual photon point source is located only a few tenths of a millimetre upstream of the effective photon source both for high- and low-Z materials. For 50 MeV electrons incident on multi-layered full range targets the radial energy fluence distributions will have a full width at half maximum (FWHM) of 80 to 100 mm at 1 m from the target. The best target composition made of two layers when the space is limited to 15 mm was found to be 9 mm-Be followed by 6 mm W. A thin beryllium target (approximately 3 mm) results in a high-intensity bremsstrahlung lobe with a FWHM of about 35 mm at the isocentre. Interestingly, the forward dose rate in such a beam is as high as 62% of the maximum achievable with an optimal target design, even if on average only 1 MeV is lost by the electrons.

摘要

现代适形放疗受益于使用扫描的高能窄致辐射束,并结合动态双聚焦多叶准直和清除磁铁进行非均匀剂量输送。当使用清除磁铁去除电子和正电子时,靶区空间有限,需要非传统的薄多层靶。因此,已经开发了一种计算技术,用于确定任意多层致辐射靶的致辐射束的前向产额和角分布,以及有效光子点源和虚拟光子点源的大小和位置。采用了电子扩散方程的高斯近似,并与致辐射产生过程进行卷积。对于具有任意发射度的电子入射到任何多层和原子序数组合的靶上,该模型至少在1-100 MeV能量范围内都适用。通过从薄的实验铍靶轮廓中解卷积电子多重散射过程,准确确定了本征致辐射光子轮廓。对于入射到高密度和高原子序数靶(如钨靶)上的电子笔形束,有效光子源的尺寸保持在约十分之一毫米左右。对于低Z材料(如Be、C和Al),有效光子源位于靶内3-7 mm深处,并随原子序数增加而减小。离轴位置的有效光子源然后从中心轴向外移动相当大的距离,在对准准直器时应予以考虑。对于高Z材料(如钨),有效光子源位于几十分之一毫米深处。对于高Z和低Z材料,虚拟光子点源都位于有效光子源上游仅几十分之一毫米处。对于入射到多层全范围靶上的50 MeV电子,在距靶1 m处的径向能量注量分布的半高宽(FWHM)将为80至100 mm。当空间限制为15 mm时,由两层组成的最佳靶成分被发现是9 mm-Be后接6 mm W。一个薄铍靶(约3 mm)在等中心处产生一个半高宽约为35 mm的高强度致辐射叶。有趣的是,即使电子平均仅损失1 MeV,这样一束光中的前向剂量率高达最佳靶设计所能达到的最大值的62%。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验