Suppr超能文献

热激光医学中的时间常数:II. 时间常数的分布与组织的热弛豫

Time constants in thermal laser medicine: II. Distributions of time constants and thermal relaxation of tissue.

作者信息

van Gemert M J, Lucassen G W, Welch A J

机构信息

Laser Center, Academic Medical Center, Amsterdam, The Netherlands.

出版信息

Phys Med Biol. 1996 Aug;41(8):1381-99. doi: 10.1088/0031-9155/41/8/009.

Abstract

The thermal response of a semi-infinite medium in air, irradiated by laser light in a cylindrical geometry, cannot accurately be approximately by single radial and axial time constants for heat conduction. This report presents an analytical analysis of hear conduction where the thermal response is expressed in terms of distributions over radial and axial time constants. The source term for heat production is written as the product of a Gaussian shaped radial term and an exponentially shaped axial term. The two terms are expanded in integrals over eigenfunctions of the radial and axial parts of the Laplace heat conduction operator. The result is a double integral over the coupled distributions of the two time constants to compute the temperature rise as a function of time and of axial and radial positions. The distribution of axial time constants is a homogeneous slowly decreasing function of spatial frequency (v) indicating that one single axial time constant cannot reasonably characterize axial heat conduction. The distribution of radial time constants is a function centred around a distinguished maximum in the spatial frequency (lambda) close to the single radial time constant value used previously. This suggests that one radial time constant to characterize radial heat conduction may be a useful concept. Special cases have been evaluated analytically, such as short and long irradiation times, axial or radial heat conduction (shallow or deep penetrating laser beams) and, especially, thermal relaxation (cooling) of the tissue. For shallow penetrating laser beams the asymptotic cooling rate is confirmed to be proportional to [(t)0.5-(t-tL)0.5] which approaches 1/t0.5 for t >> tL, where t is the time and tL is the laser pulse duration. For deep penetrating beams this is proportional to 1/(t-tL). For intermediate penetration, i.e. penetration depths about equal to spot size diameters, this is proportional to 1/(t-tL)1.5. The double integral has been evaluated numerically and the results have been compared with the various approximations available including the new results and the single time constant model. The present analysis completes our previous work, presents a closed-form formulation for the non-ablative thermal response of laser irradiated tissue and provides insight into the practical value of using time constants for representing heat conduction effects, in particular for the rate of cooling of the tissue surface.

摘要

在圆柱形几何结构中,处于空气中的半无限介质受到激光照射时,其热响应无法通过用于热传导的单个径向和轴向时间常数准确近似。本报告给出了热传导的解析分析,其中热响应通过径向和轴向时间常数的分布来表示。产热的源项写成高斯形状的径向项与指数形状的轴向项的乘积。这两项在拉普拉斯热传导算子径向和轴向部分的本征函数上展开为积分。结果是对两个时间常数的耦合分布进行双重积分,以计算作为时间以及轴向和径向位置函数的温度升高。轴向时间常数的分布是空间频率(v)的均匀缓慢递减函数,这表明单个轴向时间常数无法合理地表征轴向热传导。径向时间常数的分布是一个以接近先前使用的单个径向时间常数值的空间频率(λ)处的显著最大值为中心的函数。这表明用一个径向时间常数来表征径向热传导可能是一个有用的概念。已对特殊情况进行了解析评估,例如短和长照射时间、轴向或径向热传导(浅或深穿透激光束),特别是组织的热弛豫(冷却)。对于浅穿透激光束,渐近冷却速率被证实与[(t)0.5-(t - tL)0.5]成正比,对于t >> tL,其趋近于1/t0.5,其中t是时间,tL是激光脉冲持续时间。对于深穿透光束,这与1/(t - tL)成正比。对于中等穿透,即穿透深度约等于光斑尺寸直径,这与1/(t - tL)1.5成正比。已对双重积分进行了数值评估,并将结果与包括新结果和单时间常数模型在内的各种近似进行了比较。本分析完善了我们之前的工作,给出了激光照射组织非消融热响应的封闭形式公式,并深入了解了使用时间常数来表示热传导效应的实际价值,特别是对于组织表面的冷却速率。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验