Wroblowski B, Díaz J F, Heremans K, Engelborghs Y
Laboratorium voor Chemische en Biologische Dynamica, Katholieke Universiteit Leuven, Belgium.
Proteins. 1996 Aug;25(4):446-55. doi: 10.1002/prot.5.
We have performed a 800 ps molecular dynamics simulation of bovine pancreatic trypsin inhibitor (BPTI) in water coupled to a pressure bath at 1, 10,000, 15,000, and 20,000 bar. The simulation reproduces quite well the experimental behavior of the protein under high pressure. The protein keeps its globular form, but adopts a different conformation with a very small reduction in volume. Some residues in the hydrophobic core become exposed to water and a large part of the secondary structure of the protein, (60% of the sheet structure and 40% of the helical structure) is denatured between 10 and 15 kbar. This is in good agreement with experimental data (Goossens, K., et al. Eur. J. Biochem, 236:254-262, 1996) that show denaturation of BPTI between 8 and 14 kbar. A further increase of the pressure results in a freezing of the protein as deduced from the large decrease of the mobility of the residues. During the simulation, the normal structure of water changes from an ice Ih-like to an ice VI-like structure, while keeping the liquid state. The driving force of the high pressure induced conformational transition seems be the higher compressibility of the water compared with the protein. This produces a change in the solvent properties and leads to penetration of the solvent into the hydrophobic core.
我们对水中的牛胰蛋白酶抑制剂(BPTI)进行了800皮秒的分子动力学模拟,该模拟与压力为1、10000、15000和20000巴的压力浴耦合。该模拟很好地再现了蛋白质在高压下的实验行为。蛋白质保持其球状形态,但采用了不同的构象,体积略有减小。疏水核心中的一些残基暴露于水中,并且蛋白质二级结构的很大一部分(60%的片层结构和40%的螺旋结构)在10至15千巴之间变性。这与实验数据(Goossens,K.等人,《欧洲生物化学杂志》,236:254 - 262,1996)非常吻合,该实验数据表明BPTI在8至14千巴之间变性。压力的进一步增加导致蛋白质冻结,这是由残基流动性的大幅降低推断出来的。在模拟过程中,水的正常结构从类冰Ih结构转变为类冰VI结构,同时保持液态。高压诱导构象转变的驱动力似乎是水相对于蛋白质具有更高的压缩性。这导致溶剂性质发生变化,并导致溶剂渗透到疏水核心中。