Suppr超能文献

Parameter extraction from population codes: a critical assessment.

作者信息

Snippe H P

机构信息

Department of Psychology, University of Stirling, Scotland, U.K.

出版信息

Neural Comput. 1996 Apr 1;8(3):511-29. doi: 10.1162/neco.1996.8.3.511.

Abstract

In perceptual systems, a stimulus parameter can be extracted by determining the center-of-gravity of the response profile of a population of neural sensors. Likewise at the motor end of a neural system, center-of-gravity decoding, also known as vector decoding, generates a movement direction from the neural activation profile. We evaluate these schemes from a statistical perspective, by comparing their statistical variance with the minimum variance possible for an unbiased parameter extraction from the noisy neuronal ensemble activation profile. Center-of-gravity decoding can be statistically optimal. This is the case for regular arrays of sensors with gaussian tuning profiles that have an output described by Poisson statistics, and for arrays of sensors with a sinusoidal tuning profile for the (angular) parameter estimated. However, there are also many cases in which center-of-gravity decoding is highly inefficient. This includes the important case where sensor positions are very irregular. Finally, we study the robustness of center-of-gravity decoding against response nonlinearities at different stages of an information processing hierarchy. We conclude that, in neural systems, instead of representing a parameter explicitly, it is safer to leave the parameter coded implicitly in a neuronal ensemble activation profile.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验