Suppr超能文献

一种学习检测随机点立体图中视差的非线性赫布网络。

A nonlinear Hebbian network that learns to detect disparity in random-dot stereograms.

作者信息

Lee C W, Olshausen B A

机构信息

Washington University School of Medicine, St. Louis, MO 63110, USA.

出版信息

Neural Comput. 1996 Apr 1;8(3):545-66. doi: 10.1162/neco.1996.8.3.545.

Abstract

An intrinsic limitation of linear, Hebbian networks is that they are capable of learning only from the linear pairwise correlations within an input stream. To explore what higher forms of structure could be learned with a nonlinear Hebbian network, we constructed a model network containing a simple form of nonlinearity and we applied it to the problem of learning to detect the disparities present in random-dot stereograms. The network consists of three layers, with nonlinear sigmoidal activation functions in the second-layer units. The nonlinearities allow the second layer to transform the pixel-based representation in the input layer into a new representation based on coupled pairs of left-right inputs. The third layer of the network then clusters patterns occurring on the second-layer outputs according to their disparity via a standard competitive learning rule. Analysis of the network dynamics shows that the second-layer units' nonlinearities interact with the Hebbian learning rule to expand the region over which pairs of left-right inputs are stable. The learning rule is neurobiologically inspired and plausible, and the model may shed light on how the nervous system learns to use coincidence detection in general.

摘要

线性赫布网络的一个内在局限性在于,它们只能从输入流中的线性成对相关性进行学习。为了探究非线性赫布网络能够学习何种更高形式的结构,我们构建了一个包含简单非线性形式的模型网络,并将其应用于学习检测随机点立体图中存在的视差问题。该网络由三层组成,第二层单元具有非线性S型激活函数。这些非线性使得第二层能够将输入层基于像素的表示转换为基于左右输入耦合对的新表示。然后,网络的第三层通过标准竞争学习规则,根据视差对第二层输出上出现的模式进行聚类。对网络动态的分析表明,第二层单元的非线性与赫布学习规则相互作用,以扩展左右输入对稳定的区域。该学习规则受到神经生物学启发且合理,该模型可能会为神经系统如何学习普遍使用巧合检测提供启示。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验