Suppr超能文献

通过高压下的分子动力学模拟研究溶剂化蛋白质的固有压缩性和体积压缩

Intrinsic compressibility and volume compression in solvated proteins by molecular dynamics simulation at high pressure.

作者信息

Paci E, Marchi M

机构信息

Section de Biophysique des Protéines et des Membranes, Commissariat à l'Energie Atomique, Centre d'Etudes, Gif-sur-Yvette, France.

出版信息

Proc Natl Acad Sci U S A. 1996 Oct 15;93(21):11609-14. doi: 10.1073/pnas.93.21.11609.

Abstract

Constant pressure and temperature molecular dynamics techniques have been employed to investigate the changes in structure and volumes of two globular proteins, superoxide dismutase and lysozyme, under pressure. Compression (the relative changes in the proteins' volumes), computed with the Voronoi technique, is closely related with the so-called protein intrinsic compressibility, estimated by sound velocity measurements. In particular, compression computed with Voronoi volumes predicts, in agreement with experimental estimates, a negative bound water contribution to the apparent protein compression. While the use of van der Waals and molecular volumes underestimates the intrinsic compressibilities of proteins, Voronoi volumes produce results closer to experimental estimates. Remarkably, for two globular proteins of very different secondary structures, we compute identical (within statistical error) protein intrinsic compressions, as predicted by recent experimental studies. Changes in the protein interatomic distances under compression are also investigated. It is found that, on average, short distances compress less than longer ones. This nonuniform contraction underlines the peculiar nature of the structural changes due to pressure in contrast with temperature effects, which instead produce spatially uniform changes in proteins. The structural effects observed in the simulations at high pressure can explain protein compressibility measurements carried out by fluorimetric and hole burning techniques. Finally, the calculation of the proteins static structure factor shows significant shifts in the peaks at short wavenumber as pressure changes. These effects might provide an alternative way to obtain information concerning compressibilities of selected protein regions.

摘要

恒压和恒温分子动力学技术已被用于研究两种球状蛋白质,即超氧化物歧化酶和溶菌酶,在压力下的结构和体积变化。使用Voronoi技术计算的压缩率(蛋白质体积的相对变化)与通过声速测量估计的所谓蛋白质固有压缩率密切相关。特别是,用Voronoi体积计算的压缩率与实验估计一致,预测结合水对表观蛋白质压缩有负贡献。虽然使用范德华体积和分子体积会低估蛋白质的固有压缩率,但Voronoi体积产生的结果更接近实验估计。值得注意的是,对于两种二级结构非常不同的球状蛋白质,正如最近的实验研究所预测的,我们计算出相同的(在统计误差范围内)蛋白质固有压缩率。还研究了蛋白质在压缩下原子间距离的变化。结果发现,平均而言,短距离的压缩比长距离的小。这种不均匀的收缩突出了压力引起的结构变化的特殊性质,与温度效应相反,温度效应会使蛋白质产生空间均匀的变化。在高压模拟中观察到的结构效应可以解释通过荧光和空穴烧蚀技术进行的蛋白质压缩率测量。最后,蛋白质静态结构因子的计算表明,随着压力变化,短波数处的峰有明显的移动。这些效应可能提供一种获取有关选定蛋白质区域压缩率信息的替代方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验