Suppr超能文献

氧化型低密度脂蛋白与动脉粥样硬化中巨噬细胞的相互作用以及抗氧化剂的抗动脉粥样硬化作用。

Interaction of oxidized low density lipoprotein with macrophages in atherosclerosis, and the antiatherogenicity of antioxidants.

作者信息

Aviram M

机构信息

Lipid Research Laboratory, Technion Faculty of Medicine, Rappaport Family Institute for Research, Haifa, Israel.

出版信息

Eur J Clin Chem Clin Biochem. 1996 Aug;34(8):599-608.

PMID:8877334
Abstract

Macrophage cholesterol accumulation and foam cell formation, the hallmark of early atherosclerosis, is the result of enhanced cellular uptake of plasma low density lipoprotein (LDL). Native LDL, has to undergo oxidative modifications in order to be taken up at an enhanced rate by macrophages, leading to foam cell formation. Macrophage uptake of oxidized LDL involves its binding to scavanger receptors (including cellular proteoglycans) and this is followed by an impaired cellular cholesterol metabolism. Cells of the arterial wall including macrophages can oxidize LDL in a process that involves activation of cellular oxygenases, such as NADPH oxidase and 15-lipoxygenase. This process, however, also depends on the macrophage antioxidant environment, where glutathione peroxidase and reduced glutathione play an important protective role against cell-mediated oxidation of LDL. Macrophage phospholipids peroxidation under oxidative stress can also contribute to macrophage-mediated oxidation of LDL. Evidence for the occurrence of oxidized LDL in vivo is as follows: 1) In the atherosclerotic lesion [in humans, as well as in the transgenic, apolipoprotein E-deficient mice], LDL is oxidized (and as a result, it is also aggregated), in comparison to plasma LDL which is normally not oxidized. 2) Plasma LDL from patients at high risk for atherosclerosis (such as hypercholesterolaemic, hypertensive, diabetic and renal failure patients), as well as from the apolipoprotein E-deficient mice, demonstrates increased susceptibility to oxidation in comparison to normal LDL. In some groups of these patients LDL is minimally oxidized already in plasma. 3) Supplementation of nutritional antioxidants, which are rich in polyphenols (red wine, licorice, olive oil), or of selenium to humans or to the apolipoprotein E-deficient mice, as well as therapy with beta-hydroxy-beta-methyl-glutaryl-CoA reductase inhibitors (so-called "statins") in hyperocholesterolaemic patients, were shown to reduce the susceptibility of LDL to oxidation. This effect could be associated with a reduction in the size of the atherosclerotic lesion and may thus contribute to attenuation of the atherosclerotic process.

摘要

巨噬细胞胆固醇蓄积和泡沫细胞形成是早期动脉粥样硬化的标志,这是细胞对血浆低密度脂蛋白(LDL)摄取增强的结果。天然LDL必须经过氧化修饰,才能被巨噬细胞以更高的速率摄取,从而导致泡沫细胞形成。巨噬细胞对氧化型LDL的摄取涉及其与清道夫受体(包括细胞蛋白聚糖)的结合,随后细胞胆固醇代谢受损。包括巨噬细胞在内的动脉壁细胞可通过涉及细胞氧化酶(如NADPH氧化酶和15-脂氧合酶)激活的过程氧化LDL。然而,这个过程也取决于巨噬细胞的抗氧化环境,其中谷胱甘肽过氧化物酶和还原型谷胱甘肽对细胞介导的LDL氧化起着重要的保护作用。氧化应激下巨噬细胞磷脂过氧化也可能导致巨噬细胞介导的LDL氧化。体内存在氧化型LDL的证据如下:1)在动脉粥样硬化病变中[在人类以及转基因载脂蛋白E缺乏小鼠中],与通常未被氧化的血浆LDL相比,LDL被氧化(结果也发生聚集)。2)动脉粥样硬化高危患者(如高胆固醇血症、高血压、糖尿病和肾衰竭患者)以及载脂蛋白E缺乏小鼠的血浆LDL与正常LDL相比,对氧化的敏感性增加。在这些患者的某些群体中,LDL在血浆中已经被轻微氧化。3)向人类或载脂蛋白E缺乏小鼠补充富含多酚的营养抗氧化剂(红酒、甘草、橄榄油)或硒,以及对高胆固醇血症患者使用β-羟基-β-甲基戊二酰辅酶A还原酶抑制剂(所谓的“他汀类药物”)治疗,已显示可降低LDL对氧化的敏感性。这种作用可能与动脉粥样硬化病变大小的减小有关,因此可能有助于减缓动脉粥样硬化进程。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验