Steinhoff H J, Hubbell W L
Lehrstuhl für Biophysik, Ruhr-Universität, Germany.
Biophys J. 1996 Oct;71(4):2201-12. doi: 10.1016/S0006-3495(96)79421-3.
We present a method to simulate electron paramagnetic resonance spectra of spin-labeled proteins that explicitly includes the protein structure in the vicinity of the attached spin label. The method is applied to a spin-labeled polyleucine alpha-helix trimer. From short (6 ns) stochastic dynamics simulations of this trimer, an effective potential energy function is calculated. Interaction with secondary and tertiary structures determine the reorientational motion of the spin label side chains. After reduction to a single particle problem, long stochastic dynamic trajectories (700 ns) of the spin label side-chain reorientation are calculated from which the Lamor frequency trajectory and subsequently the electron paramagnetic resonance spectrum is determined. The simulated spectra agree well with experimental electron paramagnetic resonance spectra of bacteriorhodopsin mutants with spin labels in similar secondary and tertiary environments as in the polyleucine.
我们提出了一种模拟自旋标记蛋白质电子顺磁共振光谱的方法,该方法明确包含了附着自旋标记附近的蛋白质结构。该方法应用于自旋标记的聚亮氨酸α-螺旋三聚体。通过对该三聚体进行短时间(6纳秒)的随机动力学模拟,计算出有效势能函数。与二级和三级结构的相互作用决定了自旋标记侧链的重取向运动。在简化为单粒子问题后,计算出自旋标记侧链重取向的长随机动力学轨迹(700纳秒),由此确定拉莫尔频率轨迹以及随后的电子顺磁共振光谱。模拟光谱与在与聚亮氨酸类似的二级和三级环境中带有自旋标记的细菌视紫红质突变体的实验电子顺磁共振光谱吻合良好。