Santos M A, Perreau V M, Tuite M F
Research School of Biosciences, University of Kent, Canterbury, UK.
EMBO J. 1996 Sep 16;15(18):5060-8.
The human pathogenic yeast Candida albicans and a number of other Candida species translate the standard leucine CUG codon as serine. This is the latest addition to an increasing number of alterations to the standard genetic code which invalidate the theory that the code is frozen and universal. The unexpected finding that some organisms evolved alternative genetic codes raises two important questions: how have these alternative codes evolved and what evolutionary advantages could they create to allow for their selection? To address these questions in the context of serine CUG translation in C.albicans, we have searched for unique structural features in seryl-tRNA(CAG), which translates the leucine CUG codon as serine, and attempted to reconstruct the early stages of this genetic code switch in the closely related yeast species Saccharomyces cerevisiae. We show that a purine at position 33 (G33) in the C.albicans Ser-tRNA(CAG) anticodon loop, which replaces a conserved pyrimidine found in all other tRNAs, is a key structural element in the reassignment of the CUG codon from leucine to serine in that it decreases the decoding efficiency of the tRNA, thereby allowing cells to survive low level serine CUG translation. Expression of this tRNA in S.cerevisiae induces the stress response which allows cells to acquire thermotolerance. We argue that acquisition of thermotolerance may represent a positive selection for this genetic code change by allowing yeasts to adapt to sudden changes in environmental conditions and therefore colonize new ecological niches.
人类致病酵母白色念珠菌和其他一些念珠菌属将标准的亮氨酸CUG密码子翻译为丝氨酸。这是对标准遗传密码越来越多的改变中的最新一例,这些改变使密码是固定不变且通用的这一理论失效。一些生物体进化出替代遗传密码这一意外发现引发了两个重要问题:这些替代密码是如何进化的,以及它们能创造出哪些进化优势以使其被选择?为了在白色念珠菌中丝氨酸CUG翻译的背景下解决这些问题,我们在将亮氨酸CUG密码子翻译为丝氨酸的丝氨酰 - tRNA(CAG)中寻找独特的结构特征,并试图在密切相关的酵母物种酿酒酵母中重建这种遗传密码转换的早期阶段。我们表明,白色念珠菌丝氨酰 - tRNA(CAG)反密码子环中第33位的嘌呤(G33)取代了所有其他tRNA中保守的嘧啶,它是CUG密码子从亮氨酸重新分配为丝氨酸的关键结构元件,因为它降低了tRNA的解码效率,从而使细胞能够在低水平丝氨酸CUG翻译下存活。这种tRNA在酿酒酵母中的表达会诱导应激反应,使细胞获得耐热性。我们认为,获得耐热性可能代表了对这种遗传密码变化的正向选择,因为它使酵母能够适应环境条件的突然变化,从而在新的生态位中定殖。