Suppr超能文献

念珠菌属的非标准遗传密码:是一种不断演变的遗传密码还是一种新的适应机制?

The non-standard genetic code of Candida spp.: an evolving genetic code or a novel mechanism for adaptation?

作者信息

Santos M A, Ueda T, Watanabe K, Tuite M F

机构信息

Research School of Biosciences, University of Kent, Canterbury, UK.

出版信息

Mol Microbiol. 1997 Nov;26(3):423-31. doi: 10.1046/j.1365-2958.1997.5891961.x.

Abstract

A number of yeasts of the genus Candida translate the standard leucine-CUG codon as serine. This unique genetic code change is the only known alteration to the universal genetic code in cytoplasmic mRNAs, of either eukaryotes or prokaryotes, which involves reassignment of a sense codon. Translation of CUG as serine in these species is mediated by a novel serine-tRNA (ser-tRNACAG), which uniquely has a guanosine at position 33, 5' to the anticodon, a position that is almost invariably occupied by a pyrimidine (uridine in general) in all other tRNAs. We propose that G-33 has two important functions: lowering the decoding efficiency of the ser-tRNACAG and preventing binding of the leucyl-tRNA synthetase. This implicates this nucleotide as a key player in the evolutionary reassignment of the CUG codon. In addition, the novel ser-tRNACAG has 1-methylguanosine (m1G-37) at position 37, 3' to the anticodon, which is characteristic of leucine, but not serine tRNAs. Remarkably, m1G-37 causes leucylation of the ser-tRNACAG both in vitro and in vivo, making the CUG codon an ambiguous codon: the polysemous codon. This indicates that some Candida species tolerate ambiguous decoding and suggests either that (i) the genetic code change has not yet been fully established and is evolving at different rates in different Candida species; or (ii) CUG ambiguity is advantageous and represents the final stage of the reassignment. We propose that such dual specificity indicates that reassignment of the CUG codon evolved through a mechanism that required codon ambiguity and that ambiguous decoding evolved to generate genetic diversity and allow for rapid adaptation to environmental challenges.

摘要

许多念珠菌属的酵母将标准的亮氨酸 - CUG密码子翻译为丝氨酸。这种独特的遗传密码变化是真核生物或原核生物细胞质mRNA中已知的对通用遗传密码的唯一改变,涉及一个有义密码子的重新分配。在这些物种中,CUG翻译为丝氨酸是由一种新型的丝氨酸 - tRNA(ser - tRNACAG)介导的,它在反密码子5'端的第33位独特地含有一个鸟苷,在所有其他tRNA中,这个位置几乎总是被一个嘧啶(通常是尿苷)占据。我们提出G - 33有两个重要功能:降低ser - tRNACAG的解码效率并防止亮氨酰 - tRNA合成酶的结合。这表明该核苷酸是CUG密码子进化重新分配中的关键因素。此外,新型的ser - tRNACAG在反密码子3'端的第37位有1 - 甲基鸟苷(m1G - 37),这是亮氨酸tRNA而非丝氨酸tRNA的特征。值得注意的是,m1G - 37在体外和体内都会导致ser - tRNACAG的亮氨酰化,使CUG密码子成为一个模糊密码子:多义密码子。这表明一些念珠菌物种容忍模糊解码,并暗示要么(i)遗传密码变化尚未完全确立,且在不同的念珠菌物种中以不同速度进化;要么(ii)CUG模糊性是有利的,代表了重新分配的最后阶段。我们提出这种双重特异性表明CUG密码子的重新分配是通过一种需要密码子模糊性的机制进化而来的,并且模糊解码的进化是为了产生遗传多样性并允许快速适应环境挑战。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验