Suppr超能文献

Prostaglandin G/H synthase-2 (cyclooxygenase-2) mRNA expression is decreased in Alzheimer's disease.

作者信息

Chang J W, Coleman P D, O'Banion M K

机构信息

Department of Neurobiology, University of Rochester School of Medicine and Dentistry, NY 14642, USA.

出版信息

Neurobiol Aging. 1996 Sep-Oct;17(5):801-8. doi: 10.1016/0197-4580(96)00110-8.

Abstract

Recent evidence suggests that the use of nonsteroidal anti-inflammatory drugs (NSAIDS) is beneficial for therapy or prevention of Alzheimer's disease (AD). The major anti-inflammatory action of NSAIDS is to inhibit prostaglandin G/H synthase-2 (PGHS-2), the first committed enzymatic step for prostaglandin biosynthesis. We have previously shown that PGHS-2 message is induced by Interleukin-1 beta and other inflammatory mediators in primary cultures of rodent astrocytes. To determine whether similar elevations of PGHS-2 occur as part of the gliosis in AD, we quantified PGHS-2 mRNA levels in control and AD brain by Northern hybridization analysis. To our surprise we found that PGHS-2 mRNA levels were reduced threefold in AD neocortex relative to control brain tissue. In contrast, levels were not reduced in putamen, an area that is relatively spared in AD. To localize PGHS-2 mRNA production in control and AD brain, sections of neocortex and hippocampus were hybridized with a 35S-labeled riboprobe for human PGHS-2 followed by immunocytochemistry with antibodies against neuron specific enolase (NSE) or glial fibrillary acidic protein (GFAP). Our findings indicate that PGHS-2 message is primarily localized to cells that stain for NSE rather than GFAP. Furthermore, in the three cases we examined, PGHS-2 hybridization per neuron appeared to be reduced in AD. Thus, the decrease we observe in overall PGSH-2 mRNA levels is likely to reflect both the known decline in numbers of neurons in AD as well as a lowered capacity for neuronal synthesis of PGHS-2, perhaps due to dysfunction or a loss of synaptic input.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验