Suppr超能文献

Characterization of AUCs from sparsely sampled populations in toxicology studies.

作者信息

Pai S M, Fettner S H, Hajian G, Cayen M N, Batra V K

机构信息

Department of Drug Metabolism and Pharmacokinetics, Schering-Plough Research Institute, Kenilworth, New Jersy, USA.

出版信息

Pharm Res. 1996 Sep;13(9):1283-90. doi: 10.1023/a:1016097227603.

Abstract

PURPOSE

The objective of this work was to develop and validate blood sampling schemes for accurate AUC determination from a few samples (sparse sampling). This will enable AUC determination directly in toxicology studies, without the need to utilize a large number of animals.

METHODS

Sparse sampling schemes were developed using plasma concentration-time (Cp-t) data in rats from toxicokinetic (TK) studies with the antiepileptic felbamate (F) and the antihistamine loratadine (L); Cp-t data at 13-16 time-points (N = 4 or 5 rats/time-point) were available for F, L and its active circulating metabolite descarboethoxyloratadine (DCL). AUCs were determined using the full profile and from 5 investigator designated time-points termed "critical" time-points. Using the bootstrap (re-sampling) technique, 1000 AUCs were computed by sampling (N = 2 rats/point, with replacement) from the 4 or 5 rats at each "critical" point. The data were subsequently modeled using PCNONLIN, and the parameters (ka, ke, and Vd) were perturbed by different degrees to simulate pharmacokinetic (PK) changes that may occur during a toxicology study due to enzyme induction/inhibition, etc. Finally Monte Carlo simulations were performed with random noise (10 to 40%) applied to Cp-t and/or PK parameters to examine its impact on AUCs from sparse sampling.

RESULTS

The 5 time-points with 2 rats/point accurately and precisely estimated the AUC for F, L and DCL; the deviation from the full profile was approximately 10%, with a precision (%CV) of approximately 15%. Further, altered kinetics and random noise had minimal impact on AUCs from sparse sampling.

CONCLUSIONS

Sparse sampling can accurately estimate AUCs and can be implemented in rodent toxicology studies to significantly reduce the number of animals for TK evaluations. The same principle is applicable to sparse sampling designs in other species used in safety assessments.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验