Whelan P J
Department of Physiology, Faculty of Medicine, University of Alberta, Edmonton, Canada.
Prog Neurobiol. 1996 Aug;49(5):481-515. doi: 10.1016/0301-0082(96)00028-7.
Many of the general concepts regarding the control of walking were described years ago by: Sherrington (1906) Integrative Actions of the Nervous System. Yale University Press: New Haven, CT; Sherrington (1910a) Remarks on the reflex mechanism of the step, Brain 33, 1-25; Sherrington (1910b) Flexor-reflex of the limb, crossed extension reflex, and reflex stepping and standing (cat and dog), J. Physiol. (Lond.) 40, 28-121; Sherrington (1931) Quantitative management of contraction in lowest level coordination, Brain 54, 1-28; Graham-Brown (1912) The intrinsic factors in the act of progression in the mammal, Proc. R. Soc. Lond. 84, 308-319; Graham-Brown (1914) On the nature of the fundamental activity of the nervous centres; together with an analysis of the conditioning of rhythmic activity in progression, and a theory of the evolution of function in the nervous system, J. Physiol. 49, 18-46; Graham-Brown (1915) On the activities of the central nervous system of the unborn foetus of the cat, with a discussion of the question whether progression (walking, etc.) is a 'learnt' complex, J. Physiol. 49, 208-215; Graham-Brown (1922) The physiology of stepping, J. Neur. Psychopathol. 3, 112-116. Only in recent years, however, have the mechanisms been analyzed in detail. Quite a few of these mechanisms have been described using the decerebrate cat. Locomotion is initiated in decerebrate cats by activation of the mesencephalic locomotor region (MLR) that activates the medial medullary reticular formation (MRF) which in turn projects axons to the spinal cord which descend within the ventrolateral funiculus (VLF). The MRF region regulates as well as initiates the stepping pattern and is thought to be involved in interlimb coordination. Afferent feedback from proprioceptors and exteroceptors can modify the ongoing locomotor pattern. Recently, the types of afferents responsible for signaling the stance to swing transition have been identified. A general rule states that if the limb is unloaded and the leg is extended, then swing will occur. The afferents that detect unloading of the limb are the Golgi tendon organs and stimulation of these afferents (at group I strengths) prolongs the stance phase in walking cats. The afferents that detect the extension of the leg have been found to be the length- and velocity-sensitive muscle afferents located in flexor muscles. Plasticity of locomotor systems is discussed briefly in this article. Descerebrate animals can adapt locomotor behaviors to respond to new environmental conditions. Oligosynaptic reflex pathways that control locomotion can be recalibrated after injury in a manner that appears to be functionally related to the recovery of the animal.
谢灵顿(1906年)《神经系统的整合作用》。耶鲁大学出版社:康涅狄格州纽黑文;谢灵顿(1910a)《关于步行动作的反射机制的评论》,《大脑》第33卷,第1 - 25页;谢灵顿(1910b)《肢体的屈肌反射、交叉伸展反射以及反射性踏步和站立(猫和狗)》,《生理学杂志》(伦敦)第40卷,第28 - 121页;谢灵顿(1931年)《最低水平协调中收缩的定量调控》,《大脑》第54卷,第1 - 28页;格雷厄姆 - 布朗(1912年)《哺乳动物行进动作中的内在因素》,《伦敦皇家学会学报》第84卷,第308 - 319页;格雷厄姆 - 布朗(1914年)《关于神经中枢基本活动的本质;以及对行进中节律性活动的条件作用的分析和神经系统功能进化的理论》,《生理学杂志》第49卷,第18 - 46页;格雷厄姆 - 布朗(1915年)《关于猫未出生胎儿中枢神经系统的活动,以及关于行进(行走等)是否是一种“习得”复合体这一问题的讨论》,《生理学杂志》第49卷,第208 - 215页;格雷厄姆 - 布朗(1922年)《踏步的生理学》,《神经与精神病理学杂志》第3卷,第112 - 116页。然而,直到近年来,这些机制才得到详细分析。其中相当一部分机制是通过去大脑猫进行描述的。在去大脑猫中,运动是由中脑运动区(MLR)的激活引发的,中脑运动区激活内侧延髓网状结构(MRF),内侧延髓网状结构进而将轴突投射到脊髓,这些轴突在腹外侧索(VLF)内下行。MRF区域调节并启动踏步模式,并且被认为参与肢体间的协调。来自本体感受器和外感受器的传入反馈可以改变正在进行的运动模式。最近,已经确定了负责发出站立到摆动转换信号的传入神经类型。一条一般规则是,如果肢体卸载且腿部伸展,那么摆动就会发生。检测肢体卸载的传入神经是高尔基腱器官,对这些传入神经的刺激(以I类强度)会延长行走猫的站立期。已发现检测腿部伸展的传入神经是位于屈肌中的长度和速度敏感型肌肉传入神经。本文简要讨论了运动系统的可塑性。去大脑动物可以使运动行为适应新的环境条件。控制运动的少突触反射通路在受伤后可以重新校准,其方式似乎与动物的恢复在功能上相关。