Suppr超能文献

用于使四足机器人模拟器能够在各种地形上行走的基于中枢模式发生器的分层强化学习。

Hierarchical reinforcement learning with central pattern generator for enabling a quadruped robot simulator to walk on a variety of terrains.

作者信息

Watanabe Toshiki, Kubo Akihiro, Tsunoda Kai, Matsuba Tatsuya, Akatsuka Shintaro, Noda Yukihiro, Kioka Hiroaki, Izawa Jin, Ishii Shin, Nakamura Yutaka

机构信息

Kyoto University, Kyoto, Japan.

Advanced Telecommunications Research Institute, Kyoto, Japan.

出版信息

Sci Rep. 2025 Apr 2;15(1):11262. doi: 10.1038/s41598-025-94163-2.

Abstract

We present a data-driven deep reinforcement learning (DRL) method for the optimization of a hierarchically structured control policy that includes the central pattern generator. This method, which is as a whole referred to as the hierarchical reinforcement learning with the central pattern generator (HRL-CPG), is then evaluated with the expectation of its applicability in real robot controls. We observed that stable gait motions were gained in a reasonably small number of trials and errors. Thus, it can be deduced that our HRL-CPG can be a candidate DRL method that enables dynamical systems such as real or realistic robots to adapt to a variety of environments within a moderate physical time.

摘要

我们提出了一种数据驱动的深度强化学习(DRL)方法,用于优化包含中枢模式发生器的分层结构控制策略。这种方法整体上被称为带有中枢模式发生器的分层强化学习(HRL-CPG),随后对其在实际机器人控制中的适用性进行了评估。我们观察到,在合理数量的试验和错误中获得了稳定的步态运动。因此,可以推断出我们的HRL-CPG可以成为一种候选的DRL方法,使诸如真实或逼真机器人等动态系统能够在适度的物理时间内适应各种环境。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b097/11965509/6778c35d3b8e/41598_2025_94163_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验