Suppr超能文献

Carbohydrate uptake by quiescent and reactivated mouse blastocysts.

作者信息

Spindler R E, Renfree M B, Gardner D K

机构信息

Department of Zoology, University of Melbourne, Parkville, Victoria, Australia.

出版信息

J Exp Zool. 1996 Oct 1;276(2):132-7. doi: 10.1002/(SICI)1097-010X(19961001)276:2<132::AID-JEZ6>3.0.CO;2-P.

Abstract

The mouse, Mus musculus, can maintain blastocysts in embryonic diapause in the uterus while suckling young. This study used microfluorimetry to simultaneously examine glucose and pyruvate uptake by quiescent blastocysts, and at four hourly intervals after administration of the reactivating stimulus, oestradiol-17 beta. Following the non-invasive analysis of energy metabolism, blastocysts were incubated in colcemid (0.2 mg/ml), and mitotic activity determined. Mitoses and cell numbers in reactivated embryos increased significantly within 8 and 12 hours, respectively, after oestradiol-17 beta administration, compared to those of diapause (control) blastocysts (0.5 +/- 0.1 vs. 0.22 +/- 0.03 mitoses/embryo; P < 0.05, and 141.8 +/- 1.5 vs. 133.8 +/- 2.4 cells/ embryo; P < 0.05). Similarly, pyruvate uptake by reactivating blastocysts (9.3 +/- 1.1) was significantly higher than controls (5.8 +/- 0.8 pmol/embryo/hour; P < 0.05), within 4 hours of oestradiol-17 beta, but by 16 hours after oestradiol-17 beta administration, pyruvate uptake by reactivating blastocysts was no longer significantly different from the delayed controls. In contrast, significant differences in glucose uptake between the reactivated and control groups were not evident until 16 hours after oestradiol-17 beta (reactivating, 14.9 +/- 1.5; control, 10.6 +/- 1.7 pmol/embryo/hour; P < 0.05). These results demonstrate that pyruvate rather than glucose could supply the additional energy required during the first 12 hours of reactivation in the mouse, but from 16 hours after injection of the reactivating stimulus oestradiol-17 beta, glucose is the predominant energy source.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验