Tomme P, Creagh A L, Kilburn D G, Haynes C A
Protein Engineering Network of Centres of Excellence, University of British Columbia, Vancouver, Canada.
Biochemistry. 1996 Nov 5;35(44):13885-94. doi: 10.1021/bi961185i.
The carbohydrate-binding specificity of the N-terminal cellulose-binding domain (CBDN1) from Cellulomonas fimi beta-1,4-glucanase C (CenC) was investigated using affinity electrophoresis, binding assays and microcalorimetry in parallel with NMR and difference ultraviolet absorbance spectroscopy [Johnson, P.E., Tomme, P., Joshi, M.D., & McIntosh, I., P. (1996) Biochemistry 35, 13895-13906]. Binding of CBDN1 on insoluble cellulose is distinctly different from other cellulose-binding domains. CBDN1 binds amorphous cellulose (phosphoric acid-swollen) with high affinity (Kr = 5.1 L g-1), binds Avicel weakly and does not bind highly crystalline bacterial or tunicin cellulose. Moreover, CBDN1 binds soluble cellooligosaccharides and beta-1,4-linked oligomers of glucose such as hydroxyethycellulose, soluble beta-1,3-1,4-glucans from barley and oat, but has no affinity for alpha-1,4-, beta-1,3-, or beta-1,6-polymers of glucose. This is the first report of a cellulose-binding domain with strong and specific affinity for soluble glycans. The thermodynamics for binding of CBDN1 to oligosaccharides, soluble glycans, and phosphoric acid-swollen cellulose were investigated by titration microcalorimetry. At least four beta-1,4-linked glucopyranosides are required to detect binding. For larger glucans, with five or more glucopyranoside units, the binding constants and standard free energy changes are virtually independent of the glucan chain length, indicating that cellopentaose completely fills the binding site. Binding is moderately strong with binding constants ranging from 3,200 +/- 500 M-1 for cellotetraose, to 25,000 +/- 3,000 M-1 for the larger sugars. The reactions are controlled by favorable standard free enthalpy changes which are compensated in a linear fashion by a significant decrease in entropy. A predominance of polar interactions such as hydrogen bonding together with van der Waals interactions provide the major driving forces for the binding event.
利用亲和电泳、结合测定和微量热法,并结合核磁共振和差示紫外吸收光谱,对纤维单胞菌β-1,4-葡聚糖酶C(CenC)的N端纤维素结合结构域(CBDN1)的碳水化合物结合特异性进行了研究[约翰逊,P.E.,托梅,P.,乔希,M.D.,& 麦金托什,I.P.(1996年)《生物化学》35卷,13895 - 13906页]。CBDN1与不溶性纤维素的结合明显不同于其他纤维素结合结构域。CBDN1以高亲和力(Kr = 5.1 L g-1)结合无定形纤维素(磷酸肿胀纤维素),与微晶纤维素结合较弱,且不结合高度结晶的细菌纤维素或被囊纤维素。此外,CBDN1结合可溶性纤维寡糖和葡萄糖的β-1,4-连接寡聚物,如羟乙基纤维素、来自大麦和燕麦的可溶性β-1,3-1,4-葡聚糖,但对葡萄糖的α-1,4-、β-1,3-或β-1,6-聚合物没有亲和力。这是关于一种对可溶性聚糖具有强且特异性亲和力的纤维素结合结构域的首次报道。通过滴定微量热法研究了CBDN1与寡糖、可溶性聚糖和磷酸肿胀纤维素结合的热力学。至少需要四个β-1,4-连接的吡喃葡萄糖苷才能检测到结合。对于更大的葡聚糖,具有五个或更多吡喃葡萄糖苷单元,结合常数和标准自由能变化实际上与葡聚糖链长度无关,表明纤维五糖完全填满了结合位点。结合强度适中,结合常数范围从纤维四糖的3200±500 M-1到较大糖类的25000±3000 M-1。反应由有利 的标准自由焓变控制,该变化通过熵的显著降低以线性方式得到补偿。极性相互作用(如氢键)与范德华相互作用的主导地位为结合事件提供了主要驱动力。