Suppr超能文献

来自纤维单胞菌的外切葡聚糖酶Cex的纤维素结合结构域与不溶性微晶纤维素的结合是由熵驱动的。

Binding of the cellulose-binding domain of exoglucanase Cex from Cellulomonas fimi to insoluble microcrystalline cellulose is entropically driven.

作者信息

Creagh A L, Ong E, Jervis E, Kilburn D G, Haynes C A

机构信息

Department of Chemical Engineering, University of British Columbia, Vancouver, Canada.

出版信息

Proc Natl Acad Sci U S A. 1996 Oct 29;93(22):12229-34. doi: 10.1073/pnas.93.22.12229.

Abstract

Isothermal titration microcalorimetry is combined with solution-depletion isotherm data to analyze the thermodynamics of binding of the cellulose-binding domain (CBD) from the beta-1,4-(exo)glucanase Cex of Cellulomonas fimi to insoluble bacterial microcrystalline cellulose. Analysis of isothermal titration microcalorimetry data against two putative binding models indicates that the bacterial microcrystalline cellulose surface presents two independent classes of binding sites, with the predominant high-affinity site being characterized by a Langmuir-type Ka of 6.3 (+/-1.4) x 10(7) M-1 and the low-affinity site by a Ka of 1.1 (+/-0.6) x 10(6) M-1. CBDCex binding to either site is exothermic, but is mainly driven by a large positive change in entropy. This differs from protein binding to soluble carbohydrates, which is usually driven by a relatively large exothermic standard enthalpy change for binding. Differential heat capacity changes are large and negative, indicating that sorbent and protein dehydration effects make a dominant contribution to the driving force for binding.

摘要

等温滴定量热法与溶液耗尽等温线数据相结合,用于分析来自纤维单胞菌β-1,4-(外切)葡聚糖酶Cex的纤维素结合结构域(CBD)与不溶性细菌微晶纤维素结合的热力学。针对两种假定的结合模型对等温滴定量热法数据进行分析表明,细菌微晶纤维素表面存在两类独立的结合位点,主要的高亲和力位点的特征是朗缪尔型解离常数Ka为6.3(±1.4)×10⁷ M⁻¹,低亲和力位点的Ka为1.1(±0.6)×10⁶ M⁻¹。CBDCex与任一位点的结合都是放热的,但主要是由熵的大幅正向变化驱动的。这与蛋白质与可溶性碳水化合物的结合不同,后者通常由相对较大的结合放热标准焓变驱动。微分热容量变化大且为负,表明吸附剂和蛋白质的脱水效应是结合驱动力的主要贡献因素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97f4/37972/9b1237fca0db/pnas01526-0190-a.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验