Programa de Processos Tecnológicos e Ambientais, Universidade de Sorocaba (UNISO), Sorocaba, SP, Brazil.
Laboratório Nacional de Biociências (LNBio), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, São Paulo, Brazil.
J Biol Chem. 2022 May;298(5):101891. doi: 10.1016/j.jbc.2022.101891. Epub 2022 Apr 1.
Deciphering how enzymes interact, modify, and recognize carbohydrates has long been a topic of interest in academic, pharmaceutical, and industrial research. Carbohydrate-binding modules (CBMs) are noncatalytic globular protein domains attached to carbohydrate-active enzymes that strengthen enzyme affinity to substrates and increase enzymatic efficiency via targeting and proximity effects. CBMs are considered auspicious for various biotechnological purposes in textile, food, and feed industries, representing valuable tools in basic science research and biomedicine. Here, we present the first crystallographic structure of a CBM8 family member (CBM8), DdCBM8, from the slime mold Dictyostelium discoideum, which was identified attached to an endo-β-1,4-glucanase (glycoside hydrolase family 9). We show that the planar carbohydrate-binding site of DdCBM8, composed of aromatic residues, is similar to type A CBMs that are specific for crystalline (multichain) polysaccharides. Accordingly, pull-down assays indicated that DdCBM8 was able to bind insoluble forms of cellulose. However, affinity gel electrophoresis demonstrated that DdCBM8 also bound to soluble (single chain) polysaccharides, especially glucomannan, similar to type B CBMs, although it had no apparent affinity for oligosaccharides. Therefore, the structural characteristics and broad specificity of DdCBM8 represent exceptions to the canonical CBM classification. In addition, mutational analysis identified specific amino acid residues involved in ligand recognition, which are conserved throughout the CBM8 family. This advancement in the structural and functional characterization of CBMs contributes to our understanding of carbohydrate-active enzymes and protein-carbohydrate interactions, pushing forward protein engineering strategies and enhancing the potential biotechnological applications of glycoside hydrolase accessory modules.
解析酶如何相互作用、修饰和识别碳水化合物一直是学术、制药和工业研究的热门话题。碳水化合物结合模块(CBM)是附着在糖基活性酶上的非催化球形蛋白结构域,通过靶向和邻近效应增强酶对底物的亲和力并提高酶的效率。CBM 被认为在纺织、食品和饲料工业中具有多种生物技术用途,是基础科学研究和生物医学的有价值工具。在这里,我们展示了来自粘菌 Dictyostelium discoideum 的 CBM8 家族成员(CBM8)DdCBM8 的首个晶体结构,它被鉴定为附着在内切-β-1,4-葡聚糖酶(糖苷水解酶家族 9)上。我们表明,由芳香族残基组成的 DdCBM8 的平面碳水化合物结合位点与专门针对结晶(多链)多糖的 A 型 CBM 相似。因此,下拉测定表明 DdCBM8 能够结合不溶性纤维素。然而,亲和凝胶电泳表明 DdCBM8 也结合可溶性(单链)多糖,特别是葡甘露聚糖,类似于 B 型 CBM,尽管它对寡糖没有明显的亲和力。因此,DdCBM8 的结构特征和广泛特异性代表了对经典 CBM 分类的例外。此外,突变分析确定了参与配体识别的特定氨基酸残基,这些残基在整个 CBM8 家族中保守。CBM 结构和功能特征的这一进展有助于我们理解糖基活性酶和蛋白质-碳水化合物相互作用,推动蛋白质工程策略并增强糖苷水解酶辅助模块的潜在生物技术应用。