Kreuz A J, Simcox A, Maughan D
Department of Molecular Genetics, Ohio State University, Columbus 43210, USA.
J Cell Biol. 1996 Nov;135(3):673-87. doi: 10.1083/jcb.135.3.673.
Drosophila indirect flight muscle (IFM) contains two different types of tropomyosin: a standard 284-amino acid muscle tropomyosin, Ifm-TmI, encoded by the TmI gene, and two > 400 amino acid tropomyosins, TnH-33 and TnH-34, encoded by TmII. The two IFM-specific TnH isoforms are unique tropomyosins with a COOH-terminal extension of approximately 200 residues which is hydrophobic and rich in prolines. Previous analysis of a hypomorphic TmI mutant, Ifm(3)3, demonstrated that Ifm-TmI is necessary for proper myofibrillar assembly, but no null TmI mutant or TmII mutant which affects the TnH isoforms have been reported. In the current report, we show that four flightless mutants (Warmke et al., 1989) are alleles of TmI, and characterize a deficiency which deletes both TmI and TmII. We find that haploidy of TmI causes myofibrillar disruptions and flightless behavior, but that haploidy of TmII causes neither. Single fiber mechanics demonstrates that power output is much lower in the TmI haploid line (32% of wild-type) than in the TmII haploid line (73% of wild-type). In myofibers nearly depleted of Ifm-TmI, net power output is virtually abolished (< 1% of wild-type) despite the presence of an organized fibrillar core (approximately 20% of wild-type). The results suggest Ifm-TmI (the standard tropomyosin) plays a key role in fiber structure, power production, and flight, with reduced Ifm-TmI expression producing corresponding changes of IFM structure and function. In contrast, reduced expression of the TnH isoforms has an unexpectedly mild effect on IFM structure and function.
果蝇间接飞行肌(IFM)含有两种不同类型的原肌球蛋白:一种由TmI基因编码的标准284个氨基酸的肌肉原肌球蛋白Ifm-TmI,以及两种由TmII编码的超过400个氨基酸的原肌球蛋白TnH-33和TnH-34。两种IFM特异性的TnH异构体是独特的原肌球蛋白,其COOH末端延伸约200个残基,该延伸区域具有疏水性且富含脯氨酸。先前对一个低表达TmI突变体Ifm(3)3的分析表明,Ifm-TmI对于正确的肌原纤维组装是必需的,但尚未报道影响TnH异构体的TmI无效突变体或TmII突变体。在本报告中,我们表明四个不能飞行的突变体(Warmke等人,1989)是TmI的等位基因,并对一个缺失TmI和TmII的缺失体进行了表征。我们发现TmI单倍体导致肌原纤维破坏和不能飞行的行为,但TmII单倍体则不会。单纤维力学表明,TmI单倍体系(为野生型的32%)的功率输出远低于TmII单倍体系(为野生型的73%)。在几乎耗尽Ifm-TmI的肌纤维中,尽管存在有组织的纤维状核心(约为野生型的20%),净功率输出实际上已被消除(<野生型的1%)。结果表明,Ifm-TmI(标准原肌球蛋白)在纤维结构、功率产生和飞行中起关键作用,Ifm-TmI表达减少会导致IFM结构和功能发生相应变化。相比之下,TnH异构体表达减少对IFM结构和功能的影响出乎意料地轻微。