Suppr超能文献

果蝇间接飞行肌中的被动僵硬度通过破坏副肌球蛋白磷酸化而降低,但胚胎肌球蛋白S2铰链替代则不能降低。

Passive stiffness in Drosophila indirect flight muscle reduced by disrupting paramyosin phosphorylation, but not by embryonic myosin S2 hinge substitution.

作者信息

Hao Yudong, Miller Mark S, Swank Douglas M, Liu Hongjun, Bernstein Sanford I, Maughan David W, Pollack Gerald H

机构信息

Department of Bioengineering, University of Washington, Seattle, WA, USA.

出版信息

Biophys J. 2006 Dec 15;91(12):4500-6. doi: 10.1529/biophysj.106.088492. Epub 2006 Sep 29.

Abstract

High passive stiffness is one of the characteristic properties of the asynchronous indirect flight muscle (IFM) found in many insects like Drosophila. To evaluate the effects of two thick filament protein domains on passive sarcomeric stiffness, and to investigate their correlation with IFM function, we used microfabricated cantilevers and a high resolution imaging system to study the passive IFM myofibril stiffness of two groups of transgenic Drosophila lines. One group (hinge-switch mutants) had a portion of the endogenous S2 hinge region replaced by an embryonic version; the other group (paramyosin mutants) had one or more putative phosphorylation sites near the N-terminus of paramyosin disabled. Both transgenic groups showed severely compromised flight ability. In this study, we found no difference (compared to the control) in passive elastic modulus in the hinge-switch group, but a 15% reduction in the paramyosin mutants. All results were corroborated by muscle fiber mechanics experiments performed on the same lines. The fact that myofibril elasticity is unaffected by hinge switching implies alternative S2 hinges do not critically affect passive sarcomere stiffness. In contrast, the mechanical defects observed upon disrupting paramyosin phosphorylation sites in Drosophila suggests that paramyosin phosphorylation is important for maintaining high passive stiffness in IFM myofibrils, probably by affecting paramyosin's interaction with other sarcomeric proteins.

摘要

高被动刚度是在许多昆虫(如果蝇)中发现的异步间接飞行肌(IFM)的特征属性之一。为了评估两个粗肌丝蛋白结构域对被动肌节刚度的影响,并研究它们与IFM功能的相关性,我们使用微加工悬臂梁和高分辨率成像系统来研究两组转基因果蝇品系的被动IFM肌原纤维刚度。一组(铰链开关突变体)的内源性S2铰链区域的一部分被胚胎版本取代;另一组(副肌球蛋白突变体)副肌球蛋白N端附近的一个或多个假定磷酸化位点失活。两个转基因组的飞行能力均严重受损。在本研究中,我们发现铰链开关组的被动弹性模量与对照组相比没有差异,但副肌球蛋白突变体降低了15%。所有结果均通过对相同品系进行的肌纤维力学实验得到证实。肌原纤维弹性不受铰链开关影响这一事实意味着替代性S2铰链不会严重影响被动肌节刚度。相比之下,在果蝇中破坏副肌球蛋白磷酸化位点时观察到的机械缺陷表明,副肌球蛋白磷酸化对于维持IFM肌原纤维的高被动刚度很重要,可能是通过影响副肌球蛋白与其他肌节蛋白的相互作用来实现的。

相似文献

2
Paramyosin phosphorylation site disruption affects indirect flight muscle stiffness and power generation in Drosophila melanogaster.
Proc Natl Acad Sci U S A. 2005 Jul 26;102(30):10522-7. doi: 10.1073/pnas.0500945102. Epub 2005 Jul 14.
3
Alternative S2 hinge regions of the myosin rod affect myofibrillar structure and myosin kinetics.
Biophys J. 2009 May 20;96(10):4132-43. doi: 10.1016/j.bpj.2009.02.034.
5
Passive stiffness of Drosophila IFM myofibrils: a novel, high accuracy measurement method.
J Muscle Res Cell Motil. 2004;25(4-5):359-66. doi: 10.1007/s10974-004-0684-5.
6
Kettin, a major source of myofibrillar stiffness in Drosophila indirect flight muscle.
J Cell Biol. 2001 Sep 3;154(5):1045-57. doi: 10.1083/jcb.200104016.
7
Mutations in Drosophila myosin rod cause defects in myofibril assembly.
J Mol Biol. 2012 May 25;419(1-2):22-40. doi: 10.1016/j.jmb.2012.02.025. Epub 2012 Feb 24.
8
Alternative S2 hinge regions of the myosin rod differentially affect muscle function, myofibril dimensions and myosin tail length.
J Mol Biol. 2007 Apr 13;367(5):1312-29. doi: 10.1016/j.jmb.2007.01.045. Epub 2007 Jan 23.
9
Alterations in flight muscle ultrastructure and function in Drosophila tropomyosin mutants.
J Cell Biol. 1996 Nov;135(3):673-87. doi: 10.1083/jcb.135.3.673.
10
Assembly of thick filaments and myofibrils occurs in the absence of the myosin head.
EMBO J. 1999 Apr 1;18(7):1793-804. doi: 10.1093/emboj/18.7.1793.

引用本文的文献

1
The self-oscillation paradox in the flight motor of .
J R Soc Interface. 2023 Nov;20(208):20230421. doi: 10.1098/rsif.2023.0421. Epub 2023 Nov 15.
2
Evolution of Flight Muscle Contractility and Energetic Efficiency.
Front Physiol. 2020 Oct 9;11:1038. doi: 10.3389/fphys.2020.01038. eCollection 2020.
3
Five Alternative Myosin Converter Domains Influence Muscle Power, Stretch Activation, and Kinetics.
Biophys J. 2018 Mar 13;114(5):1142-1152. doi: 10.1016/j.bpj.2017.12.045.
5
Comparative biomechanics of thick filaments and thin filaments with functional consequences for muscle contraction.
J Biomed Biotechnol. 2010;2010:473423. doi: 10.1155/2010/473423. Epub 2010 Jun 6.
6
Removal of the cardiac myosin regulatory light chain increases isometric force production.
FASEB J. 2009 Oct;23(10):3571-80. doi: 10.1096/fj.08-126672. Epub 2009 May 26.
7
Alternative S2 hinge regions of the myosin rod affect myofibrillar structure and myosin kinetics.
Biophys J. 2009 May 20;96(10):4132-43. doi: 10.1016/j.bpj.2009.02.034.
8
Invertebrate muscles: thin and thick filament structure; molecular basis of contraction and its regulation, catch and asynchronous muscle.
Prog Neurobiol. 2008 Oct;86(2):72-127. doi: 10.1016/j.pneurobio.2008.06.004. Epub 2008 Jun 20.
9
Alternative S2 hinge regions of the myosin rod differentially affect muscle function, myofibril dimensions and myosin tail length.
J Mol Biol. 2007 Apr 13;367(5):1312-29. doi: 10.1016/j.jmb.2007.01.045. Epub 2007 Jan 23.

本文引用的文献

1
Paramyosin phosphorylation site disruption affects indirect flight muscle stiffness and power generation in Drosophila melanogaster.
Proc Natl Acad Sci U S A. 2005 Jul 26;102(30):10522-7. doi: 10.1073/pnas.0500945102. Epub 2005 Jul 14.
3
Molecular dynamics of cyclically contracting insect flight muscle in vivo.
Nature. 2005 Jan 20;433(7023):330-4. doi: 10.1038/nature03230.
4
Passive stiffness of Drosophila IFM myofibrils: a novel, high accuracy measurement method.
J Muscle Res Cell Motil. 2004;25(4-5):359-66. doi: 10.1007/s10974-004-0684-5.
5
Mutations that affect flightin expression in Drosophila alter the viscoelastic properties of flight muscle fibers.
Am J Physiol Cell Physiol. 2004 Jan;286(1):C65-72. doi: 10.1152/ajpcell.00257.2003. Epub 2003 Sep 3.
6
Mechanics of F-actin characterized with microfabricated cantilevers.
Biophys J. 2002 Nov;83(5):2705-15. doi: 10.1016/S0006-3495(02)75280-6.
8
Kettin, a major source of myofibrillar stiffness in Drosophila indirect flight muscle.
J Cell Biol. 2001 Sep 3;154(5):1045-57. doi: 10.1083/jcb.200104016.
9
An Integrated View of Insect Flight Muscle: Genes, Motor Molecules, and Motion.
News Physiol Sci. 1999 Jun;14:87-92. doi: 10.1152/physiologyonline.1999.14.3.87.
10
Asynchronous muscle: a primer.
J Exp Biol. 2000 Sep;203(Pt 18):2713-22. doi: 10.1242/jeb.203.18.2713.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验